Wu AM, Bisignano C, James SL et al (2021) Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev 2(9):e580–e592. https://doi.org/10.1016/S2666-7568(21)00172-0
Xiao PL, Cui AY, Hsu CJ et al (2022) Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: a systematic review and meta-analysis. Osteoporos Int 33(10):2137–2153. https://doi.org/10.1007/s00198-022-06454-3
Sun H, Saeedi P, Karuranga S et al (2022) IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119
Schuit SCE, Van Der Klift M, Weel AEAM et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34(1):195–202. https://doi.org/10.1016/j.bone.2003.10.001
Article CAS PubMed Google Scholar
De Laet CEDH, Van Hout BA, Burger H, Hofman A, Pols HAP (1997) Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ 315(7102):221–225. https://doi.org/10.1136/bmj.315.7102.221
Article PubMed PubMed Central Google Scholar
Trémollieres FA, Pouillès JM, Drewniak N, Laparra J, Ribot CA, Dargent-Molina P (2010) Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool. J Bone Miner Res 25(5):1002–1009. https://doi.org/10.1002/jbmr.12
Lorentzon M (2020) The importance and possible clinical impact of measuring trabecular and cortical bone microstructure to improve fracture risk prediction. J Bone Miner Res 35(5):831–832. https://doi.org/10.1002/jbmr.3940
Burr DB (2002) The contribution of the organic matrix to bone’s material properties. Bone 31(1):8–11. https://doi.org/10.1016/S8756-3282(02)00815-3
Article CAS PubMed Google Scholar
Unal M, Creecy A, Nyman JS (2018) The role of matrix composition in the mechanical behavior of bone. Curr Osteoporos Rep 16(3):205–215. https://doi.org/10.1007/s11914-018-0433-0
Article PubMed PubMed Central Google Scholar
Sled JG, Pike GB (2001) Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 46(5):923–931. https://doi.org/10.1002/mrm.1278
Article CAS PubMed Google Scholar
Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64. https://doi.org/10.1002/nbm.683
Article CAS PubMed Google Scholar
Ramani A, Dalton C, Miller DH, Tofts PS, Barker GJ (2002) Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn Reson Imaging 20(10):721–731. https://doi.org/10.1016/S0730-725X(02)00598-2
Article CAS PubMed Google Scholar
Wu T, Byun NE, Wang F et al (2020) Longitudinal assessment of recovery after spinal cord injury with behavioral measures and diffusion, quantitative magnetization transfer and functional magnetic resonance imaging. NMR Biomed 33(4):e4216. https://doi.org/10.1002/nbm.4216
Article PubMed PubMed Central Google Scholar
Bryant ND, Li K, Does MD et al (2014) Multi-parametric MRI characterization of inflammation in murine skeletal muscle. NMR Biomed 27(6):716–725
Article PubMed PubMed Central Google Scholar
Shin SH, Wendland MF, Wang J, Velasquez M, Vandsburger MH (2023) Noninvasively differentiating acute and chronic nephropathies via multiparametric urea-CEST, nuclear Overhauser enhancement -CEST, and quantitative magnetization transfer MRI. Magn Reson Med 89(2):774–786. https://doi.org/10.1002/mrm.29477
Article CAS PubMed Google Scholar
Jang A, Han PK, Ma C et al (2023) B 1 inhomogeneity-corrected T1 mapping and quantitative magnetization transfer imaging via simultaneously estimating B loch-S iegert shift and magnetization transfer effects. Magn Reson Med 90(5):1859–1873
Article CAS PubMed PubMed Central Google Scholar
Janve VA, Zu Z, Yao SY et al (2013) The radial diffusivity and magnetization transfer pool size ratio are sensitive markers for demyelination in a rat model of type III multiple sclerosis (MS) lesions. Neuroimage 74:298–305. https://doi.org/10.1016/j.neuroimage.2013.02.034
Article CAS PubMed Google Scholar
Ma Y, Shao H, Du J, Chang EY (2016) Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties. NMR Biomed 29(11):1546–1552. https://doi.org/10.1002/nbm.3609
Article CAS PubMed PubMed Central Google Scholar
Ma YJ, Jerban S, Jang H, Chang D, Chang EY, Du J (2020) Quantitative Ultrashort Echo Time (UTE) magnetic resonance imaging of bone: an update. Front Endocrinol 11:567417. https://doi.org/10.3389/fendo.2020.567417
Chang EY, Du J, Chung CB (2015) UTE imaging in the musculoskeletal system: UTE Imaging in the MSK System. J Magn Reson Imaging 41(4):870–883. https://doi.org/10.1002/jmri.24713
Ma YJ, Chang EY, Carl M, Du J (2018) Quantitative magnetization transfer ultrashort echo time imaging using a time-efficient 3D multispoke Cones sequence: 3D Multispoke UTE-Cones-MT Imaging. Magn Reson Med 79(2):692–700. https://doi.org/10.1002/mrm.26716
Article CAS PubMed Google Scholar
Ma Y, Tadros A, Du J, Chang EY (2018) Quantitative two-dimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone. Magn Reson Med 79(4):1941–1949. https://doi.org/10.1002/mrm.26846
Sritanyaratana N, Samsonov A, Mossahebi P, Wilson JJ, Block WF, Kijowski R (2014) Cross-relaxation imaging of human patellar cartilage in vivo at 3.0T. Osteoarthritis Cartilage 22(10):1568–1576. https://doi.org/10.1016/j.joca.2014.06.004
Article CAS PubMed PubMed Central Google Scholar
Portnoy S, Stanisz GJ (2007) Modeling pulsed magnetization transfer. Magn Reson Med 58(1):144–155. https://doi.org/10.1002/mrm.21244
Olesen JL, Ianus A, Østergaard L, Shemesh N, Jespersen SN (2023) Tensor denoising of multidimensional MRI data. Magn Reson Med 89(3):1160–1172. https://doi.org/10.1002/mrm.29478
Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ (1993) Quantitative interpretation of magnetization transfer. Magn Reson Med 29(6):759–766. https://doi.org/10.1002/mrm.1910290607
Article CAS PubMed Google Scholar
Sled JG, Pike GB (2000) Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences. J Magn Reson 145(1):24–36. https://doi.org/10.1006/jmre.2000.2059
Article CAS PubMed Google Scholar
Teixeira AGRP, Malik SJ, Hajnal JV (2019) Fast quantitative MRI using controlled saturation magnetization transfer. Magn Reson Med 81(2):907–920. https://doi.org/10.1002/mrm.27442
Rowley CD, Nelson MC, Campbell JSW, Leppert IR, Pike GB, Tardif CL (2024) Fast magnetization transfer saturation imaging of the brain using MP2RAGE T1 mapping. Magn Reson Med. https://doi.org/10.1002/mrm.30143
Marschner H, Pampel A, Müller R et al (2023) High-resolution magnetization-transfer imaging of post-mortem marmoset brain: comparisons with relaxometry and histology. Neuroimage 268:119860. https://doi.org/10.1016/j.neuroimage.2023.119860
Comments (0)