Khan MH et al (2010) Treatment of cellulite. Part ii. Advances and controversies. J Am Acad Dermatol 62:3: 373–384
Article CAS PubMed Google Scholar
Wong R Et al (2015) The dynamic anatomy and patterning of skin. Exp Dermatol 25(2):92–98
Mirrashed F, Et al (2004) Pilot study of dermal and subcutaneous fat structures by mri in individuals who differ gender, BMI, and cellulite grading. Skin Res Technol 10(3):161–168
Amer RI, Et al (2020) Characterization and pharmacological evaluation of anti-cellulite herbal product(s) encapsulated in 3d-fabricated polymeric microneedles. Sci Rep 10(1):1–16
Bass LS, kaminer MS (2020) Insights into the pathophysiology of cellulite: a review. Dermatologic surgery: official publication for American society for dermatologic surgery. 46:S77–s85
De la casa almeida, Suarez Serrano M, Rebollo Roldán C, Jiménez Rejano J (2013) J eur acad dermatol venereol 27(3):273–278. https://doi.org/10.1111/j.1468-3083.2012.04622.x. JJ. cellulite’s aetiology: a review
Lopes-martins RAB et al (2022) Infrared thermography as valuable tool for gynoid lipodystrophy (cellulite) diagnosis. Lasers med sci 37(6):2639–2644. https://doi.org/10.1007/s10103-022-03530-2
Merlen JF, Curri SB, Sarteel AM (1979) La Cellulite affection microvasculoconjonctive [cellulitis, a conjunctive microvascular disease]. Phlebologie 32(3):279–282 PMID: 493364
Merlen JF, Curri SB (1984) Raisons anatomo-pathologiques de la cellulite [anatomico-pathological causes of cellulite]. J Mal Vasc. 9 suppl a: 53– 4. Pmid: 6736800
Draelos ZD (2005) The disease of cellulite. J Cosmet Dermatol 4(4):221–222
Lopes-Martins RAB, Barbaroto DP, Da Silva Barbosa E, Leonardo PS, Ruiz-Silva C, Arisawa EALS (2022) Infrared thermography as valuable tool for gynoid lipodystrophy (cellulite) diagnosis. Lasers Med Sci 37(6):2639–2644. https://doi.org/10.1007/s10103-022-03530-2
Emanuele E, Bertona M, Geroldi D (2010) A multilocus candidate approach identifies ace and hif1a as susceptibility genes for cellulite. J Eur Acad Dermatol Venereol 24(8):930–935
Article CAS PubMed Google Scholar
Lopes-martins et al (2007) Low level laser therapy [lllt] in inflammatory and rheumatic diseases: a review of therapeutic mechanisms. J Rheumatol Reviews Volume 3(2):147–154. https://doi.org/10.2174/157339707780619421
Tokarska K, Tokarski S, Woźniacka A, Sysa-jędrzejowska A, Bogaczewicz J (2018) Cellulite: a cosmetic or systemic issue? Contemporary views on the etiopathogenesis of cellulite. Postepy Dermatol Alergol 35(5):442–446. https://doi.org/10.5114/ada.2018.77235
Article PubMed PubMed Central Google Scholar
Furchgott RF et al (1955) Relaxation of arterial strips by light, and the influence of drugs on this photodynamic effect. J Pharrnacol exp Th 113:29
Furchgott RF et al (1961) The photoactivated relaxation of smooth muscle of rabbit aorta. J gen Physiol 44(3):499–519. https://doi.org/10.1085/jgp.44.3.499
Article CAS PubMed PubMed Central Google Scholar
Matsunaga K, Furchgott RF (1989) Interactions of light and sodium nitrite in producing relaxation of rabbit aorta. J Pharmacol Exp Ther. 248(2):687– 95. Pmid: 2537410
Furchgott RF, Jothianandan D (1991) Endothelium-dependent and -independent vasodilation involving cyclic gmp: Relaxation Induced by Nitric Oxide, Carbon Monoxide and Light. Blood vessels. 28(1–3): 52–61. https://doi.org/10.1159/000158843. Pmid: 1848126
Chen X, Gillis CN (1992) Enhanced photorelaxation in aorta, pulmonary artery and corpus cavernosum produced by bay k 8644 or n-nitro-l-arginine. Biochem biophys res commun. 186(3):1522-7. https://doi.org/10.1016/s0006-291x(05)81579-7. Pmid: 1380806
Nordberg LO, Raffa RB, Tallarida RJ (1993) Determination of the drug-receptor dissociation constant of endothelin-1 using photorelaxation of rabbit isolated thoracic aorta. Life sci 53(3):pl33–pl38. https://doi.org/10.1016/0024-3205(93)90682-s
Article CAS PubMed Google Scholar
Lovren F, O’neill SK, Bieger D, Igbal N, Knaus EE, Triggle CR (1996) Nitric oxide, a possible mediator of 1,4-dihydropyridine-induced photorelaxation of vascular smooth muscle. Br J Pharmacol 118(4):879–884. https://doi.org/10.1111/j.1476-5381.1996.tb15481.x
Article CAS PubMed PubMed Central Google Scholar
Megson IL, Holmes SA, Magid KS, Pritchard RJ, Flitney FW (2000) Selective modifiers of glutathione biosynthesis and ‘repriming’ of vascular smooth muscle photorelaxation. Br j Pharmacol 130(7):1575–1580. https://doi.org/10.1038/sj.bjp.0703499
Article CAS PubMed PubMed Central Google Scholar
Flitney FW, Megson IL (2003) Nitric oxide and the mechanism of rat vascular smooth muscle photorelaxation. J Physiol 550(3):819–828. https://doi.org/10.1113/jphysiol.2003.041970
Article CAS PubMed PubMed Central Google Scholar
Rodriguez J et al (2003) Chemical nature of nitric oxide storage forms in rat vascular tissue. Proc Natl Acad Sci USA 100(1):336–341. https://doi.org/10.1073/pnas.0234600100
Article CAS PubMed Google Scholar
Sikka G et al (2014) Melanopsin mediates light-dependent relaxation in blood vessels. Proc Natl Acad Sci USA 111(50):17977–17982. https://doi.org/10.1073/pnas.1420258111
Article CAS PubMed PubMed Central Google Scholar
Keszler A, Lindemer B, Hogg N, Weihrauch D, Lohr NL (2018) Wavelength-dependence of vasodilation and no release from s-nitrosothiols and dinitrosyl iron complexes by far red/near infrared light. Arch Biochem Biophys 649:47–52. https://doi.org/10.1016/j.abb.2018.05.006
Article CAS PubMed Google Scholar
Buzinari TC et al (2020) Photobiomodulation induces hypotensive effect in spontaneously hypertensive rats. Lasers Med Sci 35(3):567–572. https://doi.org/10.1007/s10103-019-02849-7
Pope NJ et al (2020) Wavelength- and irradiance-dependent changes in intracellular nitric oxide level. J Biomed Opt 25(8):1–20. https://doi.org/10.1117/1.jbo.25.8.085001
Park SW et al (2021) Blue laser-induced selective vasorelaxation by the activation of noss. Microvasc Res 136:104165. https://doi.org/10.1016/j.mvr.2021.104165
Article CAS PubMed Google Scholar
Chen HH, Lin CY, Chen SJ, Huang WY, Kuo CW, Chang st (2023) Intravascular laser irradiation of blood as novel migraine treatment: an observational study. Eur J Med Res 28(1):457. https://doi.org/10.1186/s40001-023-01438-3
Article PubMed PubMed Central Google Scholar
Fu JC, Wang NK, Cheng YY, Chang ST (2022) The adjuvant therapy of intravenous laser irradiation of blood (ILIB) on pain and sleep disturbance of musculoskeletal disorders. J Pers Med 12(8):1333. https://doi.org/10.3390/jpm12081333
Da silva leal MV et al et al (2020) Effect of modified laser transcutaneous irradiation on pain and quality of life in patients with diabetic neuropathy. Photobiomodul Photomed Laser Surg 38(3):138–144. https://doi.org/10.1089/photob.2019.4714
Bereshchenko O, Bruscoli S, Riccardi C (2018) Glucocorticoids, sex hormones, and immunity. Front Immunol 19:1332. https://doi.org/10.3389/fimmu.2018.01332Pmid: 29946321; pmcid: pmc6006719
Alonso PT, Schapochnik A, Klein S, Brochetti R, Damazo AS, de Souza Setubal Destro MF, Lino-Dos-Santos-Franco A (2022) Transcutaneous systemic photobiomodulation reduced lung inflammation in experimental model of asthma by altering the mast cell degranulation and interleukin 10 level. Lasers Med Sci 37(2):1101–1109. https://doi.org/10.1007/s10103-021-03359-1
da Silva JGF, Dos Santos SS, de Almeida P, Marcos RL, Lino-Dos-Santos-Franco A (2021) Effect of systemic photobiomodulation in the course of acute lung injury in rats. Lasers Med Sci 36(5):965–973. https://doi.org/10.1007/s10103-020-03119-7
Comments (0)