A new computer-aided diagnosis tool based on deep learning methods for automatic detection of retinal disorders from OCT images

Eghtedar RA, Esmaeili M, Peyman A, Akhlaghi M, Rasta SH (2022) An update on choroidal layer segmentation methods in optical coherence tomography images: a review. J Biomed Phys Eng 12(1):1

Google Scholar 

Sunija A, Kar S, Gayathri S, Gopi VP, Palanisamy P (2021) Octnet: a lightweight CNN for retinal disease classification from optical coherence tomography images. Comput Methods Programs Biomed 200:105877

Article  Google Scholar 

Das V, Dandapat S, Bora PK (2019) Multi-scale deep feature fusion for automated classification of macular pathologies from OCT images. Biomed Signal Process Control 54:101605

Article  Google Scholar 

Chauhan NK, Singh K (2018) A review on conventional machine learning vs deep learning. In: 2018 international conference on computing, power and communication technologies (GUCON): IEEE, pp 347–352

Adel A, Soliman MM, Khalifa NEM, Mostafa K (2020) Automatic classification of retinal eye diseases from optical coherence tomography using transfer learning. In: 2020 16th international computer engineering conference (ICENCO): IEEE pp 37–42

Ai Z, Huang X, Feng J, Wang H, Tao Y, Zeng F et al. (2022) FN-OCT: disease detection algorithm for retinal optical coherence tomography based on a fusion network. Front Neuroinf 50

Chen Y-M, Huang W-T, Ho W-H, Tsai J-T (2021) Classification of age-related macular degeneration using convolutional-neural-network-based transfer learning. BMC Bioinf 22(5):1–16

Google Scholar 

He X, Fang L, Rabbani H, Chen X, Liu Z (2020) Retinal optical coherence tomography image classification with label smoothing generative adversarial network. Neurocomputing 405:37–47

Article  Google Scholar 

Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL et al (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5):1122–1131

Article  CAS  PubMed  Google Scholar 

Li F, Chen H, Liu Z, Zhang X-d, Jiang M-s, Wu Z-z et al (2019) Deep learning-based automated detection of retinal diseases using optical coherence tomography images. Biomed Opt Expr 10(12):6204–6226

Article  Google Scholar 

Mittal P (2021) Retinal disease classification using convolutional neural networks algorithm. Turkish J Comput Math Educ (TURCOMAT) 12(11):5681–5689

Google Scholar 

Tsuji T, Hirose Y, Fujimori K, Hirose T, Oyama A, Saikawa Y et al (2020) Classification of optical coherence tomography images using a capsule network. BMC Ophthalmol 20(1):1–9

Article  Google Scholar 

Xu L, Wang L, Cheng S, Li Y (2021) MHANet: a hybrid attention mechanism for retinal diseases classification. PLoS ONE 16(12):e0261285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA et al (2014) Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Opt Expr 5(10):3568–3577

Article  Google Scholar 

Kermany D, Zhang K, Goldbaum M (2018) Large dataset of labeled optical coherence tomography (oct) and chest x-ray images. Mendeley Data 3:10–17632

Google Scholar 

Luo Y, Xu Q, Jin R, Wu M, Liu L (2021) Automatic detection of retinopathy with optical coherence tomography images via a semi-supervised deep learning method. Biomed Opt Expr 12(5):2684–2702

Article  Google Scholar 

Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV) pp 801–18

Huang L, He X, Fang L, Rabbani H, Chen X (2019) Automatic classification of retinal optical coherence tomography images with layer guided convolutional neural network. IEEE Signal Process Lett 26(7):1026–1030

Article  ADS  Google Scholar 

Li F, Chen H, Liu Z, Zhang X, Wu Z (2019) Fully automated detection of retinal disorders by image-based deep learning. Graefes Arch Clin Exp Ophthalmol 257(3):495–505

Article  PubMed  Google Scholar 

Saraiva AA, Santos D, Pimentel P, Sousa JVM, Ferreira NMF, Neto JdEB et al. (2020) Classification of optical coherence tomography using convolutional neural networks. Bioinformatics pp 168–175

Adiga S, Sivaswamy J (2018) Shared encoder based denoising of optical coherence tomography images. ICVGIP pp 35-1

Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention: Springer, pp 234–241

Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition. pp 3431–3440

Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2014) Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:14127062

Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

Article  PubMed  Google Scholar 

Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:170605587

Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

Article  Google Scholar 

Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. International conference on machine learning: PMLR, pp 6105–6114

Xia X, Xu C, Nan B (2017) Inception-v3 for flower classification. In: 2017 2nd international conference on image, vision and computing (ICIVC): IEEE, pp 783–787

Mukti IZ, Biswas D (2019) Transfer learning based plant diseases detection using ResNet50. In: 2019 4th International conference on electrical information and communication technology (EICT): IEEE, pp 1–6

Tammina S (2019) Transfer learning using vgg-16 with deep convolutional neural network for classifying images. Int J Sci Res Publ (IJSRP) 9(10):143–150

Google Scholar 

Rogachev A, Melikhova E (2020) Automation of the process of selecting hyperparameters for artificial neural networks for processing retrospective text information. In: IOP conference series: earth and environmental science: IOP Publishing, p 012012

Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN (2018) Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE winter conference on applications of computer vision (WACV): IEEE, pp 839–847

Harwani BM (2018) Qt5 python GUI programming cookbook: building responsive and powerful cross-platform applications with PyQt. Packt Publishing Ltd

Siahaan V, Sianipar RH (2019) LEARNING PyQt5: a step by step tutorial to develop MySQL-based applications. Sparta publishing

Hope T, Resheff YS, Lieder I (2017) Learning tensorflow: a guide to building deep learning systems. O'Reilly Media, Inc.

Gulli A, Pal S (2017) Deep learning with Keras. Packt Publishing Ltd

Mistry K, Saluja A (2016) An introduction to opencv using python with ubuntu. Int J Sci Res Comput Sci Eng Inf Technol 1(2):65–68

Google Scholar 

Tharwat A (2020) Classification assessment methods. Appl Comput Inf 17(1):168–192

Google Scholar 

Saraiva A, Melo R, Filipe V, Sousa J, Ferreira NF, Valente A (2018) Mobile multirobot manipulation by image recognition. Int J Syst Appl Eng Devel

Comments (0)

No login
gif