Local Hölder Stability in the Inverse Steklov and Calderón Problems for Radial Schrödinger Operators and Quantified Resonances

Alessandrini, G.: Stable determination of conductivity by boundary measurements. Appl. Anal. 27, 153–172 (1988)

Article  MathSciNet  Google Scholar 

Avdonin, S., Belinskiy, B.P., Matthews, J.V.: Inverse problem on the semi-axis: local approach. Tamkang J. Math. 42(3), 275–293 (2011)

Article  MathSciNet  Google Scholar 

Avdonin, S., Mikhaylov, V., Rybkin, A.: The boundary control approach to the Titchmarsh-Weyl \(m\)-function I The response operator and the \(A\)-amplitude. Commun. Math. Phys. 275(3), 791–803 (2007)

Article  ADS  MathSciNet  Google Scholar 

Daudé, T., Kamran, N., Nicoleau, F.: Stability in the inverse Steklov problem on warped product Riemannian manifolds. J. Geom. Anal. 31(2), 1821–1854 (2021)

Article  MathSciNet  Google Scholar 

Gesztesy, F., Simon, B.: A new approach of inverse spectral theory, II. General potentials and the connection to the spectral measure. Ann. Math. 152, 593–643 (2000)

Article  MathSciNet  Google Scholar 

Gesztesy, F., Simon, B.: On local Borg-Marchenko uniqueness results. Commun. Math. Phys. 211, 273–287 (2000)

Article  ADS  MathSciNet  Google Scholar 

Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order,. Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer-Verlag, Berlin (1983)

Google Scholar 

Girouard, A., Polterovich, I.: Spectral geometry of the Steklov spectrum. J. Spectr. Theory 7(2), 321–359 (2017)

Article  MathSciNet  Google Scholar 

Killip, R., Simon, B.: Sum rules and spectral measures of Schrödinger operators with \(L^2\) potentials. Ann. Math. 170(2), 739–782 (2009)

Article  MathSciNet  Google Scholar 

Mandache, N.: Exponential instability in an inverse problem for the Schrïdinger equation. Inverse Probl. 17(5), 1435–1444 (2001)

Article  ADS  MathSciNet  Google Scholar 

Novikov, R.G.: New global stability estimates for the Gelfand-Calderón inverse problem. Inverse Probl. 27(1), 015001 (2011)

Article  ADS  Google Scholar 

Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics, vol. 171, 3rd edn. Springer (2016)

Book  Google Scholar 

Simon, B.: A new approach to inverse spectral theory, I. Fundamental formalism. Ann. Math. 150, 1029–1057 (1999)

Article  MathSciNet  Google Scholar 

Still, G.: On the approximation of Müntz series by Müntz polynomials. J. Approx. Theory 45, 26–54 (1985)

Article  MathSciNet  Google Scholar 

Comments (0)

No login
gif