Xu Y, Gong M, Wang Y et al (2023) Global trends and forecasts of breast cancer incidence and deaths. Sci Data 10:334. https://doi.org/10.1038/s41597-023-02253-5
Article PubMed PubMed Central Google Scholar
National Cancer Institute, surveillance, epidemiology and end result program (2023) (https://seer.cancer.gov/statfacts/html/breast.html).
Li J, Guo Y, Duan L, Hu X, Zhang X, Hu J, Huang L, He R, Hu Z, Luo W, Tan T, Huang R, Liao D, Zhu YS, Luo DX (2017) AKR1B10 promotes breast cancer cell migration and invasion via activation of ERK signaling. Oncotarget 8(20):33694–33703. https://doi.org/10.18632/oncotarget.16624
Article PubMed PubMed Central Google Scholar
Kastl L, Brown I, Schofield AC (2012) miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat 131(2):445–454. https://doi.org/10.1007/s10549-011-1424-3
Article CAS PubMed Google Scholar
Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI, Kovalchuk O (2010) Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer 127(8):1785–1794. https://doi.org/10.1002/ijc.25191
Article CAS PubMed Google Scholar
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P (2022) MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 41(1):77–105. https://doi.org/10.1007/s10555-021-09992-0
Article CAS PubMed Google Scholar
Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J (2018) Functional miRNAs in breast cancer drug resistance. Onco Targets Ther 11:1529–1541. https://doi.org/10.2147/OTT.S152462
Article PubMed PubMed Central Google Scholar
Morris K, Mattick J (2014) The rise of regulatory RNA. Nat Rev Genet 15:423–437. https://doi.org/10.1038/nrg3722
Article CAS PubMed PubMed Central Google Scholar
El-Toukhy SE, El-Daly SM, Kamel MM et al (2023) The diagnostic significance of circulating miRNAs and metabolite profiling in early prediction of breast cancer in Egyptian women. J Cancer Res Clin Oncol 149:5437–5451. https://doi.org/10.1007/s00432-022-04492-2
Article CAS PubMed Google Scholar
Zhang L, Liao Y, Tang L (2019) MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 38(1):53. https://doi.org/10.1186/s13046-019-1059-5
Article PubMed PubMed Central Google Scholar
Yahya SM, Elsayed GH (2015) A summary for molecular regulations of miRNAs in breast cancer. Clin Biochem 48(6):388–396. https://doi.org/10.1016/j.clinbiochem.2014.12.013
Article CAS PubMed Google Scholar
Naghizadeh S, Mohammadi A, Duijf PHG, Baradaran B, Safarzadeh E, Cho WC, Mansoori B (2020) The role of miR-34 in cancer drug resistance. J Cell Physiol 235(10):6424–6440. https://doi.org/10.1002/jcp.29640
Article CAS PubMed Google Scholar
Imani S, Wu RC, Fu J (2018) MicroRNA-34 family in breast cancer: from research to therapeutic potential. J Cancer 9(20):3765–3775. https://doi.org/10.7150/jca.25576
Article CAS PubMed PubMed Central Google Scholar
Pan W, Chai B, Li L, Lu Z, Ma Z (2023) p53/MicroRNA-34 axis in cancer and beyond. Heliyon 9(4):e15155. https://doi.org/10.1016/j.heliyon.2023.e15155
Article CAS PubMed PubMed Central Google Scholar
Yahya SMM, Elmegeed GA, Mohamed MS, Mohareb RM, Abd-Elhalim MM, Elsayed GH (2018) The effect of newly synthesized heterosteroids on miRNA34a, 98, and 214 expression levels in MCF-7 breast cancer cells. Indian J Clin Biochem 33(3):328–333. https://doi.org/10.1007/s12291-017-0681-2
Article CAS PubMed Google Scholar
Liao R, Lin Y, Zhu L (2018) Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Mol Biol Rep 45(6):2913–2923. https://doi.org/10.1007/s11033-018-4358-6
Article CAS PubMed Google Scholar
Gomes BC, Honrado M, Armada A, Viveiros M, Rueff J, Rodrigues AS (2020) ABC efflux transporters and the circuitry of miRNAs: kinetics of expression in cancer drug resistance. Int J Mol Sci 21(8):2985. https://doi.org/10.3390/ijms21082985
Article CAS PubMed PubMed Central Google Scholar
He P, Liu X, Lou Y, Gong S, Cao L (2022) miR-34a-5p enhances the sensitivity of cervical cancer cells to oxaliplatin chemotherapy via targeting MDM4. Clin Exp Obstet Gynecol 49(2):54. https://doi.org/10.31083/j.ceog4902054
Pratama MY, Pascut D, Massi MN, Tiribelli C (2019) The role of microRNA in the resistance to treatment of hepatocellular carcinoma. Ann Transl Med 7(20):577. https://doi.org/10.21037/atm.2019.09.142
Article CAS PubMed PubMed Central Google Scholar
Kern F, Krammes L, Danz K, Diener C, Kehl T, Küchler O, Fehlmann T, Kahraman M, Rheinheimer S, Aparicio-Puerta E, Wagner S, Ludwig N, Backes C, Lenhof HP, von Briesen H, Hart M, Keller A, Meese E (2021) Validation of human microRNA target pathways enables evaluation of target prediction tools. Nucleic Acids Res 49(1):127–144. https://doi.org/10.1093/nar/gkaa1161
Article CAS PubMed Google Scholar
Yang X, Shang P, Yu B, Jin Q, Liao J, Wang L, Guo X (2021) Combination therapy with miR34a and doxorubicin synergistically inhibits Dox-resistant breast cancer progression via down-regulation of Snail through suppressing Notch/NF-κB and RAS/RAF/MEK/ERK signaling pathway. Acta Pharmaceutica Sinica B 11(9):2819–2834. https://doi.org/10.1016/j.apsb.2021.06.003
Article CAS PubMed PubMed Central Google Scholar
Rana NK, Singh P, Koch B (2019) CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol Res 52(1):12. https://doi.org/10.1186/s40659-019-0221-z
Article PubMed PubMed Central Google Scholar
Krisnamurti DG, Louisa M, Anggraeni E, Wanandi SI (2016) Drug efflux transporters are overexpressed in short-term tamoxifen-induced MCF7 breast cancer cells. Adv Pharmacol Sci 2016:6702424. https://doi.org/10.1155/2016/6702424
Article CAS PubMed PubMed Central Google Scholar
Yahya SMM, Fathy SA, El-Khayat ZA et al (2018) Possible role of microRNA-122 in modulating multidrug resistance of hepatocellular carcinoma. Ind J Clin Biochem 33:21–30. https://doi.org/10.1007/s12291-017-0651-8
Hamed AR, Yahya SMM, Nabih HK (2023) Anti-drug resistance, anti-inflammation, and anti-proliferation activities mediated by melatonin in doxorubicin-resistant hepatocellular carcinoma: in vitro investigations. Naunyn-Schmiedeberg’s Arch Pharmacol 396:1117–1128. https://doi.org/10.1007/s00210-023-02385-w
Nabih HK, Hamed AR, Yahya SMM (2023) Anti-proliferative effect of melatonin in human hepatoma HepG2 cells occurs mainly through cell cycle arrest and inflammation inhibition. Sci Rep 13:4396. https://doi.org/10.1038/s41598-023-31443-9
Article CAS PubMed PubMed Central Google Scholar
Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS (2013) Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem 127(6):739–749. https://doi.org/10.1111/jnc.12437
Article CAS PubMed Google Scholar
Truksa J, Lee P, Beutler E (2007) The role of STAT, AP-1, E-box and TIEG motifs in the regulation of hepcidin by IL-6 and BMP-9: lessons from human HAMP and murine Hamp1 and Hamp2 gene promoters. Blood Cells Mol Dis 39(3):255–262. https://doi.org/10.1016/j.bcmd.2007.06.014
Article CAS PubMed PubMed Central Google Scholar
Punia R, Raina K, Agarwal R, Singh RP (2017) Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. PLoS One 12(8):e0182870. https://doi.org/10.1371/journal.pone.0182870
Article CAS PubMed PubMed Central Google Scholar
Achari C, Winslow S, Ceder Y et al (2014) Expression of miR-34c induces G2/M cell cycle arrest in breast cancer cells. BMC Cancer 14:538. https://doi.org/10.1186/1471-2407-14-538
Article CAS PubMed PubMed Central Google Scholar
Park S, Kim H, Ji HW, Kim HW, Yun SH, Choi EH, Kim SJ (2019) Cold atmospheric plasma restores paclitaxel sensitivity to paclitaxel-resistant breast cancer cells by reversing expression of resistance-related genes. Cancers (Basel) 11(12):2011. https://doi.org/10.3390/cancers11122011
Article CAS PubMed Google Scholar
Li ZH, Weng X, Xiong QY, Tu JH, Xiao A, Qiu W, Gong Y, Hu EW, Huang S, Cao YL (2017) miR-34a expression in human breast cancer is associated with drug resistance. Oncotarget 8(63):106270–106282. https://doi.org/10.18632/oncotarget.22286
Comments (0)