Braga RM, Dourado MN, Berthoin S, Thevenet D, Nourry C, Nottin S, Bosquet L (2016) Microbial interactions: ecology in a molecular perspective. Braz J Microbiol 47:86–98. https://doi.org/10.1016/j.bjm.2016.10.005
Article CAS PubMed PubMed Central Google Scholar
Scherlach K, Hertweck C (2017) Mediators of mutualistic microbe-microbe interactions. Nat Prod Rep 35:303–308. https://doi.org/10.1039/C7NP00035A
Chet I, Mitchell R (1976) Ecological aspects of microbial chemotactic behavior. Ann Rev Microbiol 30:221–239. https://doi.org/10.1146/annurev.mi.30.100176.001253
Raina J, Fernandez V, Lambert B, Stocker R, Seymour JR (2019) The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol 17:284–294. https://doi.org/10.1038/s41579-019-0182-9
Article CAS PubMed Google Scholar
Gadkar V, David-Schwartz R, Kinik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127:1493–1499. https://doi.org/10.1104/pp.010783
Article CAS PubMed PubMed Central Google Scholar
Palmieri D, Vitale S, Lima G, Di Pietro A, Turrà D (2020) A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization. Nat Commun 11:5264. https://doi.org/10.1038/s41467-020-18994-5
Article CAS PubMed PubMed Central Google Scholar
Turrà D, El Ghalid M, Rossi F, Di Pietro A (2015) Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527:521–524. https://doi.org/10.1038/nature15516
Article CAS PubMed Google Scholar
Brand A, Gow NAR (2009) Mechanisms of hypha orientation of fungi. Curr Opin Microbiol 12:350–357. https://doi.org/10.1016/j.mib.2009.05.007
Article CAS PubMed PubMed Central Google Scholar
Turrà D, Di Pietro A (2015) Chemotropic sensing in fungus–plant interactions. Curr Opin Plant Biol 26:135–140. https://doi.org/10.1016/j.pbi.2015.07.004
Article CAS PubMed Google Scholar
Braunsdorf C, Mailänder-Sánchez D, Schaller M (2016) Fungal sensing of host environment. Cell Microbiol 18:1188–1200. https://doi.org/10.1111/cmi.12610
Article CAS PubMed Google Scholar
Fomina M, Ritz K, Gadd GM (2000) Negative fungal chemotropism to toxic metals. FEMS Microbiol Lett 193:207–211. https://doi.org/10.1111/j.1574-6968.2000.tb09425.x
Article CAS PubMed Google Scholar
Demain AL, Fang A (2001) The natural functions of secondary metabolites. In: Scheper T, Ulber R (eds) Advances of biochemical engineering/biotechnology, vol 69. Springer, Berlin
Boruta T (2018) Uncovering the repertoire of fungal secondary metabolites: from Fleming’s laboratory to the International Space Station. Bioengineered 9:12–16. https://doi.org/10.3389/fpls.2021.79033
Article CAS PubMed Google Scholar
Demain AL (1986) Regulation of secondary metabolism in fungi. Pure Appl Chem 58:219–226. https://doi.org/10.1351/pac198658020219
Tsujiyama S, Minami M (2005) Production of phenol-oxidizing enzymes in the interaction between white-rot fungi. Mtcoscience 46:268–271. https://doi.org/10.1007/s10267-005-0243-y
Alam B, Li J, Ge Q, Khan MA, Göng J et al (2021) Endophytic fungi: from symbiosis to secondary metabolite communications or vice versa? Front Plant Sci 12:791033. https://doi.org/10.3389/fpls.2021.79033
Article PubMed PubMed Central Google Scholar
Weber NA (1972) The fungus-culturing behavior of ants. Ameri Zool 12:577–587
Batey SFD, Greco C, Hutchings MI, Wilkinson B (2020) Chemical warfare between fungus-growing ants and their pathogens. Curr Opin Chem Biol 59:172–181. https://doi.org/10.1016/j.cbpa.2020.08.001
Article CAS PubMed PubMed Central Google Scholar
Currie CR, Mueller UG, Malloch D (1999) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96:7998–8002. https://doi.org/10.1073/pnas.96.14.7998
Article CAS PubMed PubMed Central Google Scholar
Jiménez-Gómez I, Barcoto MO, Montoya QV, Goes AC, Monteiro LSVE, Bueno OC, Rodrigues A (2021) Host susceptibility modulates Escovopsis pathogenic potential in the fungiculture of higher Attine ants. Front Microbiol 12:673444. https://doi.org/10.3389/fmicb.2021.673444
Article PubMed PubMed Central Google Scholar
Mendonça DMF, Caixeta MCS, Martins GL, Moreira CC, Kloss TG, Elliot SL (2021) Low virulence of the fungi Escovopsis and Escovopsioides to a leaf-cutting ant-fungus symbiosis. Front Microbiol 12:673445. https://doi.org/10.3389/fmicb.2021.673445
Article PubMed PubMed Central Google Scholar
Folgarait PJ, Marfetán JA, Cafaro MJ (2011) Growth and conidiation response of Escovopsis weberi (Ascomycota: Hypocreales) against the fungal cultivar of Acromyrmex lundii (Hymenoptera: Formicidae). Environ Entomol 40:342–349. https://doi.org/10.1603/EN10111
Masiulionis VE, Pagnocca FC (2020) In vitro study of volatile organic compounds produced by the mutualistic fungus of leaf-cutter ants and the antagonist Escovopsis. Fungal Ecol 48:100986. https://doi.org/10.1016/j.funeco.2020.100986
Gerardo NM, Jacobs SR, Currie CR, Mueller UG (2006) Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis. PLoS Biol 4:e235. https://doi.org/10.1371/journal.pbio.0040235
Article CAS PubMed PubMed Central Google Scholar
Boya PC, Fernandéz-Marín H, Mejia LC, Spadafora C, Dorrestein PC, Gutierrez M (2017) Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants. Sci Rep 7:5604. https://doi.org/10.1038/s41598-017-05515-6
Heine D, Holmes NA, Worsley SF, Santos ACA, Inonocent TM et al (2018) Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen. Nat Commun 9:1–11. https://doi.org/10.1038/s41467-018-04520-1
Dhodary B, Schilg M, Wirth R, Spiteller DS (2018) Secondary metabolites from Escovopsis weberi and their role in attacking the garden fungus of leaf-cutting ants. Chem Euro J 24:4445–4452. https://doi.org/10.1002/chem.201706071
Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B Biol Sci 268:1033–1039. https://doi.org/10.1098/rspb.2001.1605
Goes AC, Barcoto MO, Kooij PW, Bueno OC, Rodrigues A (2020) How do leaf-cutting ants recognize antagonistic microbes in their fungal crops? Front Ecol Evol 8:95. https://doi.org/10.3389/fevo.2020.00095
Staub GM, Gloer KB, Gloer JB, Wicklow DT, Dowd PF (1993) New paspalinine derivatives with antiinsect an activity from the sclerotia of Aspergillus nomius. Tetra Lett 34:2569–2572. https://doi.org/10.1016/s0040-4039(00)77627-1
Montoya QV (2023) Taxonomy and systematics of the fungus-growing ant associate Escovopsis (Hypocreaceae). Stud Mycol 106:349–397. https://doi.org/10.3114/sim.2023.106.06
Pagnocca FC, Silva OA, Hebling-Beraldo MJ, Bueno OC, Fernandes JB, Vieira PC (1990) Toxicity of sesame extracts to the symbiotic fungus of leaf-cutting ants. Bull Entomol Res 80:349–352. https://doi.org/10.1017/s0007485300050550
Silva-Pinhati AOC, Bacci M Jr, Siqueira CG, Silva A, Pagnocca FC, Bueno OC, Hebling MAJ (2005) Isolation and maintenance of symbiotic fungi of ants in the tribe Attini (Hymenopera: Formicidae). Neotro Entomol 34:1–5. https://doi.org/10.1590/s1519-566X2005000100001
Abràmoff MD, Magalhães PK, Ram SJ (2004) Image processing with ImageJ. Biopho Intern 11:36–42
Noguchi K, Edgar B, Yulia RG, Konietschke F (2012) nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Soft 50:12
R Core Team (2016) R: a language and environment for statistical computing. R Found Stat Comp, Austria
Karaman I, Sahin F, Güllüce M, Ögütçü H, Sengül M, Adigüzel A (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus. J Ethnophar 85:231–235
Ostrotsky AE, Mizumoto KM, Lima LEM, Kaneko MT, Suzana O, Nishikawa OS, Freitas RB (2008) Métodos para avaliação da atividade antimicrobiana e determinação da concentração mínima inibitória (CMI) de plantas medicinais. Rev Bras Farma 18:301–307. https://doi.org/10.1590/S0102-695X2008000200026
Mody JO, Adebiyi AO, Adeniyi BA (2004) Do Aloe vera and Ageratum conyzoides enhance the anti-microbial activity of traditional medicinal soft soaps (Osedudu)? J Ethnophar 92:57–60. https://doi.org/10.1016/j.jep.2004.01.018
Comments (0)