Prospective Phycocompounds for Developing Therapeutics for Urinary Tract Infection

Catalano A, Iacopetta D, Ceramella J et al (2022) Multidrug resistance (MDR): a widespread phenomenon in pharmacological therapies. Molecules 27:616. https://doi.org/10.3390/molecules27030616

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Shouny WA, Gaafar RM, Ismail GA et al (2017) Antibacterial activity of some seaweed extracts against multidrug resistant urinary tract bacteria and analysis of their virulence genes. Int J Curr Microbiol Appl Sci 6:2569–2586. https://doi.org/10.20546/ijcmas.2017.611.302

Article  CAS  Google Scholar 

Colborn KL, Bronsert M, Hammermeister K et al (2019) Identification of urinary tract infections using electronic health record data. Am J Infect Control 47:371–375. https://doi.org/10.1016/j.ajic.2018.10.009

Article  PubMed  Google Scholar 

Timsit JF, Ruppé E, Barbier F et al (2020) Bloodstream infections in critically ill patients: an expert statement. Intensive Care Med 46:266–284. https://doi.org/10.1007/s00134-020-05950-6

Article  PubMed  PubMed Central  Google Scholar 

Walker AC, Bhargava R, Vaziriyan-Sani AS et al (2021) Colonization of the Caenorhabditis elegans gut with human enteric bacterial pathogens leads to proteostasis disruption that is rescued by butyrate. PloS Pathog 17:e1009510. https://doi.org/10.1371/journal.ppat.1009510

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen SN, Le Thi HT, Tran TD et al (2022) Clinical epidemiology characteristics and antibiotic resistance associated with urinary tract infections caused by E. coli. Int J Nephrol 2022:1–5. https://doi.org/10.1155/2022/2552990

Article  CAS  Google Scholar 

Najmi A, Javed SA, Al Bratty M et al (2022) Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 27:349. https://doi.org/10.3390/molecules27020349

Article  CAS  PubMed  PubMed Central  Google Scholar 

Church NA, McKillip JL (2021) Antibiotic resistance crisis: challenges and imperatives. Biologia 76:1535–1550. https://doi.org/10.1007/s11756-021-00697-x

Article  CAS  Google Scholar 

Wagenlehner FM, Bjerklund Johansen TE, Cai T et al (2020) Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol 17:586–600. https://doi.org/10.1038/s41585-020-0362-4

Article  PubMed  Google Scholar 

Chakrabarty S, Mishra MP, Bhattacharyay D (2022) Targeting microbial bio-film: an update on MDR gram-negative bio-film producers causing catheter-associated urinary tract infections. Appl Biochem Biotechnol 5:1–35. https://doi.org/10.1007/s12010-021-03711-9

Article  CAS  Google Scholar 

Klein RD, Hultgren SJ (2020) Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nat Rev Microbiol 18:211–226. https://doi.org/10.1038/s41579-020-0324-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vanneste BG, Van Limbergen EJ, Marcelissen TA et al (2022) Development of a management algorithm for acute and chronic radiation urethritis and cystitis. Urol Int 106:63–74. https://doi.org/10.1159/000515716

Article  PubMed  Google Scholar 

Bishoyi AK, Sahoo CR, Padhy RN (2022) Recent progression of cyanobacteria and their pharmaceutical utility: an update. J Biomol Struct Dyn 6:1–34. https://doi.org/10.1080/07391102.2022.2062051

Article  CAS  Google Scholar 

Balasubramaniam V, Gunasegavan RD, Mustar S, Lee JC, Mohd Noh MF (2021) Isolation of industrial important bioactive compounds from microalgae. Molecules 26:943. https://doi.org/10.3390/molecules26040943

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karki S, Shrestha K, Gautam R, Narayan R (2020) Phytochemical screening, FT-IR and GC-MS analysis of Euphorbia hirta. J Pharmacogn Phytochem 9:1883–1889

CAS  Google Scholar 

Pradhan J, Das S, Das BK (2014) Antibacterial activity of freshwater microalgae: a review. Afr J Pharmacy Pharmacol 8:809–818. https://doi.org/10.5897/AJPP2013.0002

Article  CAS  Google Scholar 

Rojas V, Rivas L, Cárdenas C et al (2020) Cyanobacteria and eukaryotic microalgae as emerging sources of antibacterial peptides. Molecules 25:5804. https://doi.org/10.3390/molecules25245804

Article  CAS  PubMed  PubMed Central  Google Scholar 

Demiriz T, Cokmus C, Pabuccu K (2011) Antimicrobial activity of some algal species belonging to cyanobacteria and chlorophyta. Asian J Chem 23:1384–1386

CAS  Google Scholar 

Singh U, Singh P, Singh AK et al (2021) Identification of antifungal and antibacterial biomolecules from a cyanobacterium. Arthrospira platensis Algal Res 54:102215. https://doi.org/10.1016/j.algal.2021.102215

Article  Google Scholar 

Chowdhury MM, Kubra K, Hossain MB et al (2015) Screening of antibacterial and antifungal activity of freshwater and marine algae as a prominent natural antibiotic available in Bangladesh. Int J Pharmacol 11:828–833. https://doi.org/10.3923/ijp.2015.828.833

Article  CAS  Google Scholar 

Azeez R (2014) Growth and biochemical parameters of selective cultured cyanobacteria and exploiting antibacterial potency against human bacterial pathogens. Appl Bot 72:25537–25543

Google Scholar 

Rao D (2015) Antibacterial activity of fresh water Cyanobacteria. J Algal Biomass Util 6:60–64

Google Scholar 

Nainangu P, Antonyraj AP, Subramanian K et al (2020) In vitro screening of antimicrobial, antioxidant, cytotoxic activities, and characterization of bioactive substances from freshwater cyanobacteria Oscillatoria sp. SSCM01 and Phormidium sp. SSCM02. Biocatal Agric Biotechnol 29:101772. https://doi.org/10.1016/j.bcab.2020.101772

Article  Google Scholar 

Prakash JW, Marimuthu J, Jeeva S (2011) Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pac J Trop Biomed 1:S170-173. https://doi.org/10.1016/S2221-1691(11)60149-4

Article  Google Scholar 

Hamdy AD (2018) Determination of the effect of some biological products of Synechocystis pevalekii on some pathogenic bacteria isolated from wounds and urinary tract. Tikrit J Pure Sci 23:9–17. https://doi.org/10.25130/tjps.23.2018.022

Article  Google Scholar 

Skočibušić M, Lacić S, Rašić Z (2019) Evaluation of antimicrobial potential of the marine Cyanobacterium, Rivularia mesenterica. J Adv Microbiol 16:1–1. https://doi.org/10.9734/JAMB/2019/v16i430128

Article  Google Scholar 

Tyagi R, Kaushik BD, Kumar J (2014) Antimicrobial activity of some cyanobacteria. In Microbial diversity and biotechnology in food security. 463–470. https://doi.org/10.1007/978-81-322-1801-2_41

Yi Z, Yin-Shan C, Hai-Sheng LU (2001) Screening for antibacterial and antifungal activities in some marine algae from the Fujian coast of China with three different solvents. Chin J Oceanol Limnol 19:327–331. https://doi.org/10.1007/BF02850736

Article  Google Scholar 

Thamilvanan D, Karthikeyan D, Muthukumaran M et al (2016) Antibacterial activity of selected microalgal members of Chlorophyceae. World J Pharm Pharm Sci 5:718–729

CAS  Google Scholar 

Shaima AF, Yasin NH, Ibrahim N et al (2022) Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi J Biol Sci 29:1043–1052. https://doi.org/10.1016/j.sjbs.2021.09.069

Article  CAS  PubMed  Google Scholar 

Ghalem BR, Zouaoui B (2018) Antibacterial activity of diethyl ether and chloroform extracts of seaweeds against Escherichia coli and Staphylococcus aureus. Int. J Avian Wildl 3:310–313. https://doi.org/10.15406/ijawb.2018.03.00111

Article  Google Scholar 

El Zawawy N, El Shafay S, Abomohra AE (2020) Macroalgal activity against fungal urinary tract infections: in vitro screening and evaluation study. Rend Lincei Sci Fis Nat 31:165–175. https://doi.org/10.1007/s12210-019-00856-y

Article  Google Scholar 

Christabell J, Lipton AP, Aishwarya MS et al (2011) Antibacterial activity of aqueous extract from selected macroalgae of southwest coast of India. Sea Res Util 33:67–75

Google Scholar 

Manikandan S, Ganesapandian S, Singh M et al (2011) Antimicrobial activity of seaweeds against multi drug resistant strains. Int J Pharm 7:522–526. https://doi.org/10.3923/ijp.2011.522.526

Article  Google Scholar 

Moubayed NM, Al Houri HJ, Al Khulaifi MM et al (2017) Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J Biol Sci 24:162–169. https://doi.org/10.1016/j.sjbs.2016.05.018

Article  CAS  PubMed  Google Scholar 

Selvaraj P, Neethu E, Rathika P et al (2020) Antibacterial potentials of methanolic extract and silver nanoparticles from marine algae. Biocatal Agric Biotechnol 28:101719. https://doi.org/10.1016/j.bcab.2020.101719

Article  Google Scholar 

Rajivgandhi G, Ramachandran G, Maruthupandy M et al (2018) Antibacterial effect of endophytic actinomycetes from marine algae against multi drug resistant gram-negative bacteria. Exam Mar Biol Oceanogr 1:1–8. https://doi.org/10.31031/EIMBO.2018.01.000522

Article  Google Scholar 

El-deen N (2011) Screening for antibacterial activities in some marine algae from the red sea (Hurghada, Egypt). Afr J Microbiol Res 5:2160–2167. https://doi.org/10.5897/AJMR11.390

Article  Google Scholar 

Al-Judaibi A (2014) Antibacterial effects of extracts of two types of Red Sea Algae. J Biosci Med 2:74. https://doi.org/10.4236/jbm.2014.22012

Article  CAS  Google Scholar 

Navarro F, Forján E, Vázquez M et al (2017) Antimicrobial activity of the acidophilic eukaryotic microalga Coccomyxa onubensis. Phycol Res 65:38–43. https://doi.org/10.1111/pre.12158

Article  CAS  Google Scholar 

Challouf R, Dhieb RB, Omrane H et al (2012) Antibacterial, antioxidant and cytotoxic activities of extracts from the thermophilic green alga, Cosmarium sp. Afr J Biotechnol 11:14844–14849. https://doi.org/10.5897/AJB12.1118

Comments (0)

No login
gif