Role of CaMKII in diabetes induced vascular injury and its interaction with anti-diabetes therapy

Stenmark KR, et al. The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol. 2013;75:23–47.

Article  CAS  PubMed  Google Scholar 

Schwartz SM, deBlois D, O’Brien ER.The intima. Soil for atherosclerosis and restenosis. Circ Res. 1995;77(3):445–65.

Wang M, et al. Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension. 2007;50(1):219–27.

Article  CAS  PubMed  Google Scholar 

Miller SJ, et al. Development of progressive aortic vasculopathy in a rat model of aging. Am J Physiol Heart Circ Physiol. 2007;293(5):H2634-43.

Article  CAS  PubMed  Google Scholar 

Monk BA, George SJ. The Effect of Ageing on Vascular Smooth Muscle Cell Behaviour–A Mini-Review. Gerontology. 2015;61(5):416–26.

Article  CAS  PubMed  Google Scholar 

Ross R, Glomset JA. The pathogenesis of atherosclerosis (second of two parts). N Engl J Med. 1976;295(8):420–5.

Article  CAS  PubMed  Google Scholar 

Kaiser N, et al. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. 1993;42(1):80–9.

Article  CAS  PubMed  Google Scholar 

Schwartz SM, Campbell GR, Campbell JH. Replication of smooth muscle cells in vascular disease. Circ Res. 1986;58(4):427–44.

Article  CAS  PubMed  Google Scholar 

Nguyen HT, Medford RM, Nadal-Ginard B. Reversibility of muscle differentiation in the absence of commitment: analysis of a myogenic cell line temperature-sensitive for commitment. Cell. 1983;34(1):281–93.

Article  CAS  PubMed  Google Scholar 

Takagi Y, et al. Effects of protein kinase inhibitors on growth factor-stimulated DNA synthesis in cultured rat vascular smooth muscle cells. Atherosclerosis. 1988;74(3):227–30.

Article  CAS  PubMed  Google Scholar 

Yang X, et al. Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol. 2006;26(1):85–90.

Article  PubMed  Google Scholar 

Ferreira LS, et al. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ Res. 2007;101(3):286–94.

Article  CAS  PubMed  Google Scholar 

Hirschi KK, Rohovsky SA, D’Amore PA. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol. 1998;141(3):805–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brownrigg JR, Schaper NC, Hinchliffe RJ. Diagnosis and assessment of peripheral arterial disease in the diabetic foot. Diabet Med. 2015;32(6):738–47.

Article  CAS  PubMed  Google Scholar 

Messina EJ, et al. Role of endothelium-derived prostaglandins in hypoxia-elicited arteriolar dilation in rat skeletal muscle. Circ Res. 1992;71(4):790–6.

Article  CAS  PubMed  Google Scholar 

Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524–6.

Article  CAS  PubMed  Google Scholar 

Renna NF, De Las Heras N, Miatello RM.Pathophysiology of vascular remodeling in hypertension. Int J Hypertens. 2013;808353.

Lyle AN, Taylor WR. The pathophysiological basis of vascular disease. Lab Invest. 2019;99(3):284–9.

Article  PubMed  Google Scholar 

Maiellaro K, Taylor WR. The role of the adventitia in vascular inflammation. Cardiovasc Res. 2007;75(4):640–8.

Article  CAS  PubMed  Google Scholar 

Hu D, et al. Vascular Smooth Muscle Cells Contribute to Atherosclerosis Immunity. Front Immunol. 2019;10:1101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao L, et al. Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis. Front Endocrinol (Lausanne). 2022;13.

Article  PubMed  Google Scholar 

Keats EC, Khan ZA. Vascular stem cells in diabetic complications: evidence for a role in the pathogenesis and the therapeutic promise. Cardiovasc Diabetol. 2012;11:37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cutiongco MFA, et al. Functional differences between healthy and diabetic endothelial cells on topographical cues. Biomaterials. 2018;153:70–84.

Article  CAS  PubMed  Google Scholar 

Polovina MM, Potpara TS. Endothelial dysfunction in metabolic and vascular disorders. Postgrad Med. 2014;126(2):38–53.

Article  PubMed  Google Scholar 

Onat D, et al. Human vascular endothelial cells: a model system for studying vascular inflammation in diabetes and atherosclerosis. Curr Diab Rep. 2011;11(3):193–202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond). 2005;109(2):143–59.

Article  CAS  PubMed  Google Scholar 

Gu K, Cowie CC, Harris MI.Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971-1993. Diabetes Care. 1998;21(7):1138–45.

Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

Article  CAS  PubMed  Google Scholar 

Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285–95.

Article  PubMed  Google Scholar 

Kuboki K, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation. 2000;101(6):676–81.

Article  CAS  PubMed  Google Scholar 

Fowler M.Microvascular and macrovascular complications of diabetesClinical 435. Diabetes. 2011;29(116–122):436.

Erickson JR, et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature. 2013;502(7471):372–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hegyi B, et al. CaMKII Serine 280 O-GlcNAcylation Links Diabetic Hyperglycemia to Proarrhythmia. Circ Res. 2021;129(1):98–113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishio S, et al. Activation of CaMKII as a key regulator of reactive oxygen species production in diabetic rat heart. J Mol Cell Cardiol. 2012;52(5):1103–11.

Article  CAS  PubMed  Google Scholar 

Di Pietro N, et al. Increased iNOS activity in vascular smooth muscle cells from diabetic rats: potential role of Ca(2+)/calmodulin-dependent protein kinase II delta 2 (CaMKIIdelta(2)). Atherosclerosis. 2013;226(1):88–94.

Article  PubMed  Google Scholar 

Zhang M, Lam CK. CaMKII: Therapeutic target in vascular diseases warranted for Clinical and Translational Discovery? Clin Trans Discov. 2022;2(3).

Rosenberg OS, et al. Oligomerization states of the association domain and the holoenyzme of Ca2+/CaM kinase II. FEBS J. 2006;273(4):682–94.

Article  CAS  PubMed  Google Scholar 

Ebenebe OV, Heather A, Erickson JR. CaMKII in Vascular Signalling: "Friend or Foe"? Heart Lung Circ. 2018;27(5):560–7.

Article  PubMed  Google Scholar 

Tombes RM, Faison MO, Turbeville JM. Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes. Gene. 2003;322:17–31.

Article  CAS  PubMed  Google Scholar 

Tobimatsu T, Fujisawa H. Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J Biol Chem. 1989;264(30):17907–12.

Article  CAS  PubMed  Google Scholar 

Toussaint F, et al. CaMKII regulates intracellular Ca(2)(+) dynamics in native endothelial cells. Cell Calcium. 2015;58(3):275–85.

Article  CAS  PubMed  Google Scholar 

Schworer CM, et al.Identification of novel isoforms of the delta subunit of Ca2+/calmodulin-dependent protein kinase II. Differential expression in rat brain and aorta. J Biol Chem. 1993;268(19):14443–9.

House SJ, et al. Calcium/calmodulin-dependent protein kinase II-delta isoform regulation of vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol. 2007;292(6):C2276-87.

Article  CAS 

Comments (0)

No login
gif