Stenmark KR, et al. The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol. 2013;75:23–47.
Article CAS PubMed Google Scholar
Schwartz SM, deBlois D, O’Brien ER.The intima. Soil for atherosclerosis and restenosis. Circ Res. 1995;77(3):445–65.
Wang M, et al. Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension. 2007;50(1):219–27.
Article CAS PubMed Google Scholar
Miller SJ, et al. Development of progressive aortic vasculopathy in a rat model of aging. Am J Physiol Heart Circ Physiol. 2007;293(5):H2634-43.
Article CAS PubMed Google Scholar
Monk BA, George SJ. The Effect of Ageing on Vascular Smooth Muscle Cell Behaviour–A Mini-Review. Gerontology. 2015;61(5):416–26.
Article CAS PubMed Google Scholar
Ross R, Glomset JA. The pathogenesis of atherosclerosis (second of two parts). N Engl J Med. 1976;295(8):420–5.
Article CAS PubMed Google Scholar
Kaiser N, et al. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. 1993;42(1):80–9.
Article CAS PubMed Google Scholar
Schwartz SM, Campbell GR, Campbell JH. Replication of smooth muscle cells in vascular disease. Circ Res. 1986;58(4):427–44.
Article CAS PubMed Google Scholar
Nguyen HT, Medford RM, Nadal-Ginard B. Reversibility of muscle differentiation in the absence of commitment: analysis of a myogenic cell line temperature-sensitive for commitment. Cell. 1983;34(1):281–93.
Article CAS PubMed Google Scholar
Takagi Y, et al. Effects of protein kinase inhibitors on growth factor-stimulated DNA synthesis in cultured rat vascular smooth muscle cells. Atherosclerosis. 1988;74(3):227–30.
Article CAS PubMed Google Scholar
Yang X, et al. Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol. 2006;26(1):85–90.
Ferreira LS, et al. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ Res. 2007;101(3):286–94.
Article CAS PubMed Google Scholar
Hirschi KK, Rohovsky SA, D’Amore PA. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol. 1998;141(3):805–14.
Article CAS PubMed PubMed Central Google Scholar
Brownrigg JR, Schaper NC, Hinchliffe RJ. Diagnosis and assessment of peripheral arterial disease in the diabetic foot. Diabet Med. 2015;32(6):738–47.
Article CAS PubMed Google Scholar
Messina EJ, et al. Role of endothelium-derived prostaglandins in hypoxia-elicited arteriolar dilation in rat skeletal muscle. Circ Res. 1992;71(4):790–6.
Article CAS PubMed Google Scholar
Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524–6.
Article CAS PubMed Google Scholar
Renna NF, De Las Heras N, Miatello RM.Pathophysiology of vascular remodeling in hypertension. Int J Hypertens. 2013;808353.
Lyle AN, Taylor WR. The pathophysiological basis of vascular disease. Lab Invest. 2019;99(3):284–9.
Maiellaro K, Taylor WR. The role of the adventitia in vascular inflammation. Cardiovasc Res. 2007;75(4):640–8.
Article CAS PubMed Google Scholar
Hu D, et al. Vascular Smooth Muscle Cells Contribute to Atherosclerosis Immunity. Front Immunol. 2019;10:1101.
Article CAS PubMed PubMed Central Google Scholar
Mao L, et al. Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis. Front Endocrinol (Lausanne). 2022;13.
Keats EC, Khan ZA. Vascular stem cells in diabetic complications: evidence for a role in the pathogenesis and the therapeutic promise. Cardiovasc Diabetol. 2012;11:37.
Article CAS PubMed PubMed Central Google Scholar
Cutiongco MFA, et al. Functional differences between healthy and diabetic endothelial cells on topographical cues. Biomaterials. 2018;153:70–84.
Article CAS PubMed Google Scholar
Polovina MM, Potpara TS. Endothelial dysfunction in metabolic and vascular disorders. Postgrad Med. 2014;126(2):38–53.
Onat D, et al. Human vascular endothelial cells: a model system for studying vascular inflammation in diabetes and atherosclerosis. Curr Diab Rep. 2011;11(3):193–202.
Article CAS PubMed PubMed Central Google Scholar
Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond). 2005;109(2):143–59.
Article CAS PubMed Google Scholar
Gu K, Cowie CC, Harris MI.Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971-1993. Diabetes Care. 1998;21(7):1138–45.
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.
Article CAS PubMed Google Scholar
Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):1285–95.
Kuboki K, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation. 2000;101(6):676–81.
Article CAS PubMed Google Scholar
Fowler M.Microvascular and macrovascular complications of diabetesClinical 435. Diabetes. 2011;29(116–122):436.
Erickson JR, et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature. 2013;502(7471):372–6.
Article CAS PubMed PubMed Central Google Scholar
Hegyi B, et al. CaMKII Serine 280 O-GlcNAcylation Links Diabetic Hyperglycemia to Proarrhythmia. Circ Res. 2021;129(1):98–113.
Article CAS PubMed PubMed Central Google Scholar
Nishio S, et al. Activation of CaMKII as a key regulator of reactive oxygen species production in diabetic rat heart. J Mol Cell Cardiol. 2012;52(5):1103–11.
Article CAS PubMed Google Scholar
Di Pietro N, et al. Increased iNOS activity in vascular smooth muscle cells from diabetic rats: potential role of Ca(2+)/calmodulin-dependent protein kinase II delta 2 (CaMKIIdelta(2)). Atherosclerosis. 2013;226(1):88–94.
Zhang M, Lam CK. CaMKII: Therapeutic target in vascular diseases warranted for Clinical and Translational Discovery? Clin Trans Discov. 2022;2(3).
Rosenberg OS, et al. Oligomerization states of the association domain and the holoenyzme of Ca2+/CaM kinase II. FEBS J. 2006;273(4):682–94.
Article CAS PubMed Google Scholar
Ebenebe OV, Heather A, Erickson JR. CaMKII in Vascular Signalling: "Friend or Foe"? Heart Lung Circ. 2018;27(5):560–7.
Tombes RM, Faison MO, Turbeville JM. Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes. Gene. 2003;322:17–31.
Article CAS PubMed Google Scholar
Tobimatsu T, Fujisawa H. Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J Biol Chem. 1989;264(30):17907–12.
Article CAS PubMed Google Scholar
Toussaint F, et al. CaMKII regulates intracellular Ca(2)(+) dynamics in native endothelial cells. Cell Calcium. 2015;58(3):275–85.
Article CAS PubMed Google Scholar
Schworer CM, et al.Identification of novel isoforms of the delta subunit of Ca2+/calmodulin-dependent protein kinase II. Differential expression in rat brain and aorta. J Biol Chem. 1993;268(19):14443–9.
House SJ, et al. Calcium/calmodulin-dependent protein kinase II-delta isoform regulation of vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol. 2007;292(6):C2276-87.
Comments (0)