Kane WJ (1977) Scoliosis prevalence: a call for a statement of terms. Clin Orthop Relat Res 126:43–46
Rose LD, Williams R, Ajayi B, Abdalla M, Bernard J, Bishop T, Papadakos N, Lui DF (2023) Reducing radiation exposure and cancer risk for children with scoliosis: EOS the new gold standard. Spine Deform. https://doi.org/10.1007/s43390-023-00653-6
Article PubMed PubMed Central Google Scholar
Willner S (1979) Moiré topography for the diagnosis and documentation of scoliosis. Acta Orthop Scand. https://doi.org/10.3109/17453677908989770
Porto F, Gurgel JL, Russomano T, Farinatti PDTV (2010) Moiré topography: characteristics and clinical application. Gait Posture. https://doi.org/10.1016/j.gaitpost.2010.06.017
Treuillet S, Lucas Y, Crepin G, Peuchot B, Pichaud JC (2002) SYDESCO: a laser-video scanner for 3D scoliosis evaluations. Stud Health Technol Inf 3:70–73
Knott P, Mardjetko S, Nance D, Dunn M (2006) Electromagnetic topographical technique of curve evaluation for adolescent idiopathic scoliosis. Spine (Phila Pa 1976). https://doi.org/10.1097/01.brs.0000245924.82359.ab
Manca A, Monticone M, Cugusi L, Doria C, Tranquilli-Leali P, Deriu F (2018) Back surface measurements by rasterstereography for adolescent idiopathic scoliosis: from reproducibility to data reduction analyses. Eur Spine J. https://doi.org/10.1007/s00586-018-5645-6
Drerup B (2014) Rasterstereographic measurement of scoliotic deformity. Scoliosis. https://doi.org/10.1186/s13013-014-0022-7
Article PubMed PubMed Central Google Scholar
Liu XC, Thometz JG, Lyon RM, Klein J (2001) Functional classification of patients with idiopathic scoliosis assessed by the quantec system: a discriminant functional analysis to determine patient curve magnitude. Spine (Phila Pa 1976). https://doi.org/10.1097/00007632-200106010-00020
Watanabe K, Aoki Y, Matsumoto M (2019) An application of artificial intelligence to diagnostic imaging of spine disease: estimating spinal alignment from moiré images. Neurospine. https://doi.org/10.14245/ns.1938426.213
Article PubMed PubMed Central Google Scholar
Yang J, Zhang K, Fan H, Huang Z, Xiang Y, Yang J, He L, Zhang L, Yang Y, Li R, Zhu Y, Chen C, Liu F, Yang H, Deng Y, Tan W, Deng N, Yu X, Xuan X, Xie X, Liu X, Lin H (2019) Development and validation of deep learning algorithms for scoliosis screening using back images. Commun Biol. https://doi.org/10.1038/s42003-019-0635-8
Article PubMed PubMed Central Google Scholar
Colombo T, Mangone M, Agostini F, Bernetti A, Paoloni M, Santilli V, Palagi L (2021) Supervised and unsupervised learning to classify scoliosis and healthy subjects based on non-invasive rasterstereography analysis. Plos one 16(12):e0261511
Article CAS PubMed PubMed Central Google Scholar
Weiss H, Seibel S (2013) Can surface topography replace radiography in the management of patients with scoliosis? Hard Tissue. https://doi.org/10.13172/2050-2303-2-2-437
Tabard-Fougère A, Bonnefoy-Mazure A, Hanquinet S, Lascombes P, Armand S, Dayer R (2017) Validity and reliability of spine rasterstereography in patients with adolescent idiopathic scoliosis. Spine. https://doi.org/10.1097/BRS.0000000000001679
Bassani T, Stucovitz E, Galbusera F, Brayda-Bruno M (2019) Is rasterstereography a valid noninvasive method for the screening of juvenile and adolescent idiopathic scoliosis? Eur Spine J (3). https://doi.org/10.1007/s00586-018-05876-0
Kim HE, Cosa-Linan A, Santhanam N, Jannesari M, Maros ME, Ganslandt T (2022) Transfer learning for medical image classification: a literature review. BMC Med Imaging. https://doi.org/10.1186/s12880-022-00793-7
Article PubMed PubMed Central Google Scholar
Parsons VL (2017) Stratified sampling. Anonymous. Wiley StatsRef: Statistics Reference Online, New York, pp 1–11
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L (2019) Pytorch: an imperative style, high-performance deep learning library. Curran Associates Inc, New York
Carman DL, Browne RH, Birch JG (1990) Measurement of scoliosis and kyphosis radiographs. Intraobs Interobs Var 72(3):328–33
Gstoettner M, Sekyra K, Walochnik N, Winter P, Wachter R, Bach CM (2007) Inter- and intraobserver reliability assessment of the Cobb angle: manual versus digital measurement tools. Eur Spine J. https://doi.org/10.1007/s00586-007-0401-3
Comments (0)