Whole genome sequencing reveals candidate genes involving in PAS resistance in M. Tuberculosis isolated from patients in Thailand

Agarwal N, Tyagi AK (2003) Role of 5’-TGN-3’ motif in the interaction of mycobacterial RNA polymerase with a promoter of ‘extended—10’ class. FEMS Microbiol Lett 225:75–83. https://doi.org/10.1016/S0378-1097(03)00483-X

Article  CAS  PubMed  Google Scholar 

Anonymous (1973) Co-operative controlled trial of a standard regimen of streptomycin, PAS and isoniazid and three alternative regimens of chemotherapy in Britain. A report from the British Medical Research Council. Tubercle 54:99–129. https://doi.org/10.1016/0041-3879(73)90031-7

Article  Google Scholar 

Chakraborty S, Gruber T, Barry CE, Boshoff HI, Rhee KY (2013) Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science 339:88–91. https://doi.org/10.1126/science.1228980

Article  CAS  PubMed  Google Scholar 

Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, Cox AJ, Kruglyak S, Saunders CT (2016) Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32:1220–1222. https://doi.org/10.1093/bioinformatics/btv710

Article  CAS  PubMed  Google Scholar 

Cheng YS, Sacchettini JC (2016) Structural insights into Mycobacterium tuberculosis Rv2671 protein as a dihydrofolate reductase functional analogue contributing to para-aminosalicylic acid resistance. Biochemistry 55:1107–1119. https://doi.org/10.1021/acs.biochem.5b00993

Article  CAS  PubMed  Google Scholar 

Cheng VW, Leung KS, Kwok JS, Leung RK, Yang KY, Chan RC, Kam KM, Tsui SK (2016) Phylogenetic and structural significance of dihydrofolate synthase (folC) mutations in drug-resistant Mycobacteriumtuberculosis. Microb Drug Resist 22:545–551. https://doi.org/10.1089/mdr.2015.0193

Article  CAS  PubMed  Google Scholar 

Collins L, Franzblau SG (1997) Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41:1004–1009. https://doi.org/10.1128/AAC.41.5.1004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38. https://doi.org/10.1016/0378-1119(95)00685-0

Article  CAS  PubMed  Google Scholar 

Cortes T, Schubert OT, Rose G, Arnvig KB, Comas I, Aebersold R, Young DB (2013) Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacteriumtuberculosis. Cell Rep 5:1121–1131. https://doi.org/10.1016/j.celrep.2013.10.031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cossins EA (2000) The fasinating world of folate and one-carbon metabolism. Can J Bot 78:691–708

CAS  Google Scholar 

Ferebee SH, Doster BE, Murray FJ (1966) Ethambutol: a substitute for para-aminosalicylic acid in regimens for pulmonary tuberculosis. Ann NY Acad Sci 135:910–920

Article  CAS  PubMed  Google Scholar 

Feuerriegel S, Koser C, Trube L, Archer J, Rusch Gerdes S, Richter E, Niemann S (2010) Thr202Ala in thyA is a marker for the latin American Mediterranean lineage of the Mycobacteriumtuberculosis complex rather than para-aminosalicylic acid resistance. Antimicrob Agents Chemother 54:4794–4798. https://doi.org/10.1128/AAC.00738-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Graessle OE, Pietrowski JJ (1949) The in vitro effect of para-aminosalicylic acid in preventing acquired resistance to streptomycin by Mycobacteriumtuberculosis. J Bacteriol 57:459–464. https://doi.org/10.1128/JB.57.4.459-464.1949

Article  CAS  PubMed  PubMed Central  Google Scholar 

Green JG, Matthews RG (2007) Folate biosynthesis, reduction, and polyglumylation and the conversion of folate derivatives. EcoSal Plus 2:10. https://doi.org/10.1128/ecosalplus.3.6.3.6

Article  Google Scholar 

Hajian B, Scocchera E, Shoen C, Krucinska J, Viswanathan K, N GD, Erlandsen H, Estrada A, Mikusova K, Kordulakova J, Cynamon M, Wright D (2019) Drugging the folate pathway in Mycobacterium tuberculosis: the role of multi-targeting agents. Cell Chem Biol 26:781-791e786. https://doi.org/10.1016/j.chembiol.2019.02.013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kunz BA, Kohalmi SE (1991) Modulation of mutagenesis by deoxyribonucleotide levels. Annu Rev Genet 25:339–359. https://doi.org/10.1146/annurev.ge.25.120191.002011

Article  CAS  PubMed  Google Scholar 

Lehmann J (1946) Para-aminosalicylic acid in the treatment of tuberculosis. Lancet 1:15. https://doi.org/10.1016/s0140-6736(46)91185-3

Article  CAS  PubMed  Google Scholar 

Li R, Sirawaraporn R, Chitnumsub P, Sirawaraporn W, Wooden J, Athappilly F, Turley S, Hol WG (2000) Three-dimensional structure of M. Tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs. J Mol Biol 295:307–323. https://doi.org/10.1006/jmbi.1999.3328

Article  CAS  PubMed  Google Scholar 

Mathys V, Wintjens R, Lefevre P, Bertout J, Singhal A, Kiass M, Kurepina N, Wang XM, Mathema B, Baulard A, Kreiswirth BN, Bifani P (2009) Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 53:2100–2109. https://doi.org/10.1128/AAC.01197-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medical Research Council (1952) Prevention of streptomycin resistance by combined chemotherapy; a Medical Research Council investigation. Br Med J 1:1157–1162

Article  Google Scholar 

Napier G, Campino S, Merid Y, Abebe M, Woldeamanuel Y, Aseffa A, Hibberd ML, Phelan J, Clark TG (2020) Robust barcoding and identification of Mycobacterium tuberculosis lineages for epidemiological and clinical studies. Genome Med 12:114. https://doi.org/10.1186/s13073-020-00817-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nopponpunth V, Sirawaraporn W, Greene PJ, Santi DV (1999) Cloning and expression of Mycobacterium tuberculosis and Mycobacterium leprae dihydropteroate synthase in Escherichia coli. J Bacteriol 181:6814–6821

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rengarajan J, Sassetti CM, Naroditskaya V, Sloutsky A, Bloom BR, Rubin EJ (2004) The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol 53:275–282. https://doi.org/10.1111/j.1365-2958.2004.04120.x

Article  CAS  PubMed  Google Scholar 

Richey DP, Brown GM (1969) The biosynthesis of folic acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid. J Biol Chem 244:1582–1592

Article  CAS  PubMed  Google Scholar 

Shane SJ, Laurie JH, Riley C, Boutilier M (1952) Effect of combined therapy (dihydrostreptomycin and PAS) on the emergence of streptomycin-resistant strains of Tubercle bacilli. N Engl J Med 246:132–134. https://doi.org/10.1056/NEJM195201242460404

Article  CAS  PubMed  Google Scholar 

Shiota T, Baugh CM, Jackson R, Dillard R (1969) The enzymatic synthesis of hydroxymethyldihydropteridine pyrophosphate and dihydrofolate. Biochemistry 8:5022–5028

Article  CAS  PubMed  Google Scholar 

Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF et al (1991) New use of BCG for recombinant vaccines. Nature 351:456–460. https://doi.org/10.1038/351456a0

Article  CAS  PubMed  Google Scholar 

Valdivia RH, Hromockyj AE, Monack D, Ramakrishnan L, Falkow S (1996) Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions. Gene 173:47–52. https://doi.org/10.1016/0378-1119(95)00706-7

Article  CAS  PubMed  Google Scholar 

WHO Collaborating Centre for Tuberculosis Chemotherapy (1976) a comparative study of daily and twice-weekly continuation regimens of tuberculosis chemotherapy, including a comparison of two durations of sanatorium treatment. Tubercle 57:45–48. https://doi.org/10.1016/0041-3879(76)90016-7

Article  Google Scholar 

Ye QZ, Liu J, Walsh CT (1990) p-Aminobenzoate synthesis in Escherichia coli: purification and characterization of PabB as aminodeoxychorismate synthase and enzyme X as aminodeoxychorismate lyase. Proc Natl Acad Sci USA 87:9391–9395

Article  CAS  PubMed  PubMed Central  Google Scholar 

Youmans GP, Raleigh GW, Youmans AS (1947) The tuberculostatic action of para-aminosalicylic acid. J Bacteriol 54:409–416

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Li D, Zhao L, Fleming J, Lin N, Wang T, Liu Z, Li C, Galwey N, Deng J, Zhou Y, Zhu Y, Gao Y, Wang T, Wang S, Huang Y, Wang M, Zhong Q, Zhou L, Chen T, Zhou J, Yang R, Zhu G, Hang H, Zhang J, Li F, Wan K, Wang J, Zhang XE, Bi L (2013) Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet 45:1255–1260. https://doi.org/10.1038/ng.2735

Article  CAS  PubMed  Google Scholar 

Zhang X, Liu L, Zhang Y, Dai G, Huang H, Jin Q (2015) Genetic determinants involved in p-aminosalicylic acid resistance in clinical isolates from tuberculosis patients in northern China from 2006 to 2012. Antimicrob Agents Chemother 59:1320–1324. https://doi.org/10.1128/AAC.03695-14

Article 

Comments (0)

No login
gif