Babalola MO, Ayodeji AO, Bamidele OS, Ajele JO (2020) Biochemical characterization of a surfactant-stable keratinase purified from Proteus vulgaris EMB-14 grown on low-cost feather meal. Biotechnol Lett 42(12):2673–2683. https://doi.org/10.1007/s10529-020-02976-0
Article CAS PubMed Google Scholar
Bouacem K, Bouanane-Darenfed A, Zaraî Jaouadi N, Joseph M, Hacene H, Ollivier B, Fardeau ML, Bejar S, Jaouadi B (2016) Novel serine keratinase from Caldicoprobacter algeriensis exhibiting outstanding hide dehairing abilities. Int J Biol Macromol 86:321–328. https://doi.org/10.1016/j.ijbiomac.2016.01.074
Article CAS PubMed Google Scholar
Cai CG, Lou BG, Zheng XD (2008) Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis. J Zhejiang Univ Sci B 9(1):60–67. https://doi.org/10.1631/jzus.B061620
Article CAS PubMed PubMed Central Google Scholar
Chen HY, Tian R, Ni Z, Zhang Q, Zhang TX, Chen Z, Chen KP, Yang SL (2015) Surface display of the thermophilic lipase Tm1350 on the spore of Bacillus subtilis. Extremophiles 19(4):799–808. https://doi.org/10.1007/s00792-015-0755-0
Article CAS PubMed Google Scholar
Chen HY, Chen Z, Ni Z, Tian R, Zhang TX, Jia JR, Chen KP, Yang SL (2016) Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner. J Mol Catal B: Enzym 123:73–80. https://doi.org/10.1016/j.molcatb.2015.11.002
Chen L, Holmes M, Schaefer E, Mulchandani A, Ge X (2018) Highly active spore biocatalyst by self-assembly of co-expressed anchoring scaffoldin and multimeric enzyme. Biotechnol Bioeng 115(3):557–564. https://doi.org/10.1002/bit.26492
Article CAS PubMed Google Scholar
Chen HY, Heng XY, Li KY, Wang Z, Ni Z, Gao E, Yong YC, Wu X (2022) Complexation of multiple mineral elements by fermentation and its application in laying hens. Front Nutr 9:1001412. https://doi.org/10.3389/fnut.2022.1001412
Article CAS PubMed PubMed Central Google Scholar
Eder J, Fersht AR (1995) Pro-sequence-assisted protein folding. Mol Microbiol 16(4):609–614. https://doi.org/10.1111/j.1365-2958.1995.tb02423.x
Article CAS PubMed Google Scholar
Fang Z, Zhang J, Du GC, Chen J (2017) Rational protein engineering approaches to further improve the keratinolytic activity and thermostability of engineered keratinase KerSMD. Biochem Eng J 127:147–153. https://doi.org/10.1016/j.bej.2017.08.010
Gradisar H, Kern S, Friedrich J (2000) Keratinase of Doratomyces microsporus. Appl Microbiol Biotechnol 53(2):196–200. https://doi.org/10.1007/s002530050008
Article CAS PubMed Google Scholar
Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70(1):21–33. https://doi.org/10.1007/s00253-005-0239-8
Article CAS PubMed Google Scholar
Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, De Felice M, Pozzi G, Ricca E (2001) Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol 183(21):6294–6301. https://doi.org/10.1128/jb.183.21.6294-6301.2001
Article CAS PubMed PubMed Central Google Scholar
Kang SJ, Park EA, Lee DH, Hong KW (2019) Comparison of the stability of eGFP displayed on the Bacillus subtilis spore surface using CotB and C-terminally truncated CotB proteins as an anchoring motif under extreme conditions. Appl Biol Chem 62(1):41. https://doi.org/10.1186/s13765-019-0448-y
Kang SJ, Jun JS, Moon JA, Hong KW (2020) Surface display of p75, a Lactobacillus rhamnosus GG derived protein, on Bacillus subtilis spores and its antibacterial activity against Listeria monocytogenes. AMB Express 10(1):139. https://doi.org/10.1186/s13568-020-01073-9
Article CAS PubMed PubMed Central Google Scholar
Li ZW, Liang S, Ke Y, Deng JJ, Zhang MS, Lu DL, Li JZ, Luo XC (2020) The feather degradation mechanisms of a new Streptomyces sp. isolate SCUT-3. Commun Biol 3(1):191. https://doi.org/10.1038/s42003-020-0918-0
Article CAS PubMed PubMed Central Google Scholar
Lin HH, Yin LJ, Jiang ST (2009) Cloning, expression, and purification of Pseudomonas aeruginosa keratinase in Escherichia coli AD494(DE3)pLysS expression system. J Agric Food Chem 57(9):3506–3511. https://doi.org/10.1021/jf803752j
Article CAS PubMed Google Scholar
Mauriello EM, Duc le H, Isticato R, Cangiano G, Hong HA, De Felice M, Ricca E, Cutting SM (2004) Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22(9–10):1177–1187. https://doi.org/10.1016/j.vaccine.2003.09.031
Article CAS PubMed Google Scholar
Nelson DL, Kornberg A (1970) Biochemical studies of bacterial sporulation and germination. 18. Free amino acids in spores. J Biol Chem 245(5):1128–1136. https://doi.org/10.1136/vr.d899
Article CAS PubMed Google Scholar
Qiu J, Wilkens C, Barrett K, Meyer AS (2020) Microbial enzymes catalyzing keratin degradation: classification, structure, function. Biotechnol Adv 44:107607. https://doi.org/10.1016/j.biotechadv.2020.107607
Article CAS PubMed PubMed Central Google Scholar
Rostami A, Hinc K, Goshadrou F, Shali A, Bayat M, Hassanzadeh M, Amanlou M, Eslahi N, Ahmadian G (2017) Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pestic Biochem Physiol 140:17–23. https://doi.org/10.1016/j.pestbp.2017.05.008
Article CAS PubMed Google Scholar
Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Sci (New York NY) 228(4705):1315–1317. https://doi.org/10.1126/science.4001944
Tian JW, Long XF, Tian YQ, Shi B (2019) Enhanced extracellular recombinant keratinase activity in Bacillus subtilis SCK6 through signal peptide optimization and site-directed mutagenesis. RSC Adv 9(57):33337–33344. https://doi.org/10.1039/c9ra07866e
Article CAS PubMed PubMed Central Google Scholar
Tissopi T, Kumar S, Sadhu A, Mutturi S (2022) Surface display of novel transglycosylating α-glucosidase from aspergillus neoniger on Pichia pastoris for synthesis of isomaltooligosaccharides. Biochem Eng J 181:108400. https://doi.org/10.1016/j.bej.2022.108400
Wang J, Wang WW, Qi GH, Cui CF, Wu SG, Zhang HJ, Xu L, Wang J (2021) Effects of dietary Bacillus subtilis supplementation and calcium levels on performance and eggshell quality of laying hens in the late phase of production. Poult Sci 100(3):100970. https://doi.org/10.1016/j.psj.2020.12.067
Article CAS PubMed Google Scholar
Wang Z, Chen YZ, Yan MC, Li KY, Okoye CO, Fang Z, Ni Z, Chen HY (2023) Research progress on the degradation mechanism and modification of keratinase. Appl Microbiol Biotechnol 107(4):1003–1017. https://doi.org/10.1007/s00253-023-12360-3
Article CAS PubMed Google Scholar
Williams CM, Richter CS, Mackenzie JM, Shih JC (1990) Isolation, identification, and characterization of a feather-degrading bacterium. Appl Environ Microbiol 56(6):1509–1515. https://doi.org/10.1128/aem.56.6.1509-1515.1990
Article CAS PubMed PubMed Central Google Scholar
Yong B, Fei XT, Shao HH, Xu P, Hu YW, Ni WM, Xiao QJ, Tao X, He XY, Feng H (2020) Recombinant expression and biochemical characterization of a novel keratinase BsKER71 from feather degrading bacterium Bacillus subtilis S1-4. AMB Express 10(1):9. https://doi.org/10.1186/s13568-019-0939-6
Article CAS PubMed PubMed Central Google Scholar
Zaraî Jaouadi N, Rekik H, Ben Elhoul M, Zohra Rahem F, Gorgi Hila C, Slimene Ben Aicha H, Badis A, Toumi A, Bejar S, Jaouadi B (2015) A novel keratinase from Bacillus tequilensis strain Q7 with promising potential for the leather bating process. Int J Biol Macromol 79:952–964. https://doi.org/10.1016/j.ijbiomac.2015.05.038
Article CAS PubMed Google Scholar
Zhang RX, Gong JS, Su C, Zhang DD, Tian H, Dou WF, Li H, Shi JS, Xu ZH (2016) Biochemical characterization of a novel surfactant-stable serine keratinase with no collagenase activity from Brevibacillus parabrevis CGMCC 10798. Int J Biol Macromol 93:843–851. https://doi.org/10.1016/j.ijbiomac.2016.09.063
Article CAS PubMed Google Scholar
Zhang GY, An YF, Zabed HM, Guo Q, Yang MM, Yuan J, Li W, Sun WJ, Qi XH (2019) Bacillus subtilis Spore Surface Display Technology: a review of its development and applications. J Microbiol Biotechnol 29(2):179–190. https://doi.org/10.4014/jmb.1807.06066
Comments (0)