Microbial synthesis of pyrroloquinoline quinone

Akagawa M, Nakano M, Ikemoto K (2016) Recent progress in studies on the health benefits of pyrroloquinoline quinone. Biosci Biotechnol Biochem 80:13–22

Article  CAS  PubMed  Google Scholar 

Barr I, Latham JA, Iavarone AT, Chantarojsiri T, Hwang JD, Klinman JP (2016) Demonstration that the radical s-adenosylmethionine (SAM) enzyme PqqE catalyzes de novo carbon-carbon cross-linking within a peptide substrate pqqa in the presence of the peptide chaperone PqqD. J Biol Chem 291:8877–8884

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barr I, Stich TA, Gizzi AS, Grove TL, Bonanno JB, Latham JA, Chung T, Wilmot CM, Britt RD, Almo SC, Klinman JP (2018) X-ray and EPR characterization of the auxiliary Fe-S clusters in the radical SAM enzyme PqqE. Biochemistry 57:1306–1315

Article  CAS  PubMed  Google Scholar 

Biville F, Turlin E, Gasser F (1989) Cloning and genetic-analysis of 6 pyrroloquinoline quinone biosynthesis genes in methylobacterium-Organophilum DSM 760. J Gen Microbiol 135:2917–2929

CAS  Google Scholar 

Dunbar KL, Tietz JI, Cox CL, Burichart BJ, Mitchell DA (2015) Identification of an auxiliary leader peptide-binding protein required for azoline formation in ribosomal natural products. J Am Chem Soc 137:7672–7677

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans RL, Latham JA, Xia YL, Klinman JP, Wilmot CM (2017) Nuclear magnetic resonance structure and binding studies of PqqD, a chaperone required in the biosynthesis of the bacterial dehydrogenase cofactor pyrroloquinoline quinone. Biochemistry 56:2735–2746

Article  CAS  PubMed  Google Scholar 

Grove TL, Ahlum JH, Sharma P, Krebs C, Booker SJ (2010) A consensus mechanism for radical sam-dependent dehydrogenation BtrN contains two 4fe-4s clusters. Biochemistry 49:3783–3785

Article  CAS  PubMed  Google Scholar 

He K, Nukada H, Urakami TJ, Murphy MP (2003) Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): implications for its function in biological systems. Biochem Pharmacol 65:67–74

Article  CAS  PubMed  Google Scholar 

Jonscher KR, Rucker RB (2019) Chapter13-Pyrroloquinoline quinone: its profile, effects on the liver and implications for health and disease prevention. Diet Interv Liver Dis 157–173

Ke C (2020) Breeding of Hyphomicrobium denitrificans for high production of pyrroloquinoline quinone by adaptive directed domestication. Chin J Biotechnol 36:152–161

CAS  Google Scholar 

Klinman JP, Bonnot F (2014) Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chem Rev 114:4343–4365

Article  CAS  PubMed  Google Scholar 

Koehn EM, Latham JA, Armand T, Evans RL, Tu XY, Wilmot CM, Iavarone AT, Klinman JP (2019) Discovery of hydroxylase activity for PqqB provides a missing link in the pyrroloquinoline quinone biosynthetic pathway. J Am Chem Soc 141:4398–4405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kudo F, Hoshi S, Kawashima T, Kamachi T, Eguchi T (2014) Characterization of a radical s-adenosyl-l-methionine epimerase, NeoN, in the last step of neomycin b biosynthesis. J Am Chem Soc 136:17356–17356

Article  CAS  Google Scholar 

Latham JA, Iavarone AT, Barr I, Juthani PV, Klinman JP (2015) PqqD is a novel peptide chaperone that forms a ternary complex with the radical s-adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway. J Biol Chem 290:12908–12918

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latham JA, Barr I, Klinman JP (2017) At the confluence of ribosomally synthesized peptide modification and radical S-adenosylmethionine (SAM) enzymology. J Biol Chem 292:16397–16405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lavi A, Ngan CH, Movshovitz-Attias D, Bohnuud T, Yueh C, Beglov D, Schueler-Furman O, Kozakov D (2014) Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins-Struct Funct Bioinform 81:2096–2105

Article  Google Scholar 

Li H, Kang Z, Li J, Zhou J, Du G (2016) Mutagenesis of Methylobacterium extorquens AM1 for increasing pyrroloquinoline quinone production by atmospheric and room temperature plasma. Chin J Biotechnol 32:1145–1149

CAS  Google Scholar 

Ma K, Cui JZ, Ye JB, Hu XM, Ma GL, Yang XP (2017) Pyrroloquinoline quinone from Gluconobacter oxydans fermentation broth enhances superoxide anion-scavenging capacity of Cu/Zn-SOD. Food Chem 230:291–294

Article  CAS  PubMed  Google Scholar 

Maiocco SJ, Grove TL, Booker SJ, Elliott SJ (2015) Electrochemical resolution of the 4Fe-4S centers of the adomet radical enzyme btrn: evidence of proton coupling and an unusual, low-potential auxiliary cluster. J Am Chem Soc 137:8664–8667

Article  CAS  PubMed  Google Scholar 

Marchler-Bauer A, Bo Y, Han LY, He JE, Lanczycki CJ, Lu SN, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang ZX, Yamashita RA, Zhang DC, Zheng CJ, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203

Article  CAS  PubMed  Google Scholar 

Martins AM, Latham JA, Martel PJ, Barr I, Iavarone AT, Klinman JP (2019) A two-component protease in Methylorubrum extorquens with high activity toward the peptide precursor of the redox cofactor pyrroloquinoline quinone. J Biol Chem 294:15025–15036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mi Z, Cheng J, Zhao P, Tian P, Tan T (2020) Improved production of pyrroloquinoline quinone by simultaneous augmentation of its synthesis gene expression and glucose metabolism in Klebsiella pneumoniae. Curr Microbiol 77:1174–1183

Article  CAS  PubMed  Google Scholar 

Misra HS, Rajpurohit YS, Khairnar NP (2012) Pyrroloquinoline-quinone and its versatile roles in biological processes. J Biosci 37:313–325

Article  CAS  PubMed  Google Scholar 

Mukai K, Ouchi A, Nakano M (2011) Kinetic study of the quenching reaction of singlet oxygen by pyrroloquinolinequinol (PQQH2, a reduced form of pyrroloquinolinequinone) in micellar solution. J Agric Food Chem 59:1705–1712

Article  CAS  PubMed  Google Scholar 

Podzelinska K, He SM, Wathier M, Yakunin A, Proudfoot M, Hove-Jensen B, Zechel DL, Jia ZC (2009) Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation. J Biol Chem 284:17216–17226

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramamoorthi R, Lidstrom ME (1995) Transcriptional analysis of pqqd and study of the regulation of pyrroloquinoline quinone biosynthesis in Methylobacterium-extorquens AM1. J Bacteriol 177:206–211

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saichana N, Tanizawa K, Ueno H, Pechousek J, Novak P, Frebortova J (2017) Characterization of auxiliary iron-sulfur clusters in a radical S-adenosylmethionine enzyme PqqE from Methylobacterium extorquens AM1. FEBS Open Bio 7:1864–1879

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwarzenbacher R, Metlitzky M, Puehringer S (2008) The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach. BMC Mol Biol 9:1–11

Google Scholar 

Shen Y-Q, Bonnot F, Imsand EM, RoseFigura JM, Sjoelander K, Klinman JP (2012) Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry 51:2265–2275

Article  CAS  PubMed  Google Scholar 

Si ZJ, Zhu JZ, Wang WG, Huang L, Wei PL, Cai J, Xu ZN (2016) Novel and efficient screening of PQQ high-yielding strains and subsequent cultivation optimization. Appl Microbiol Biotechnol 100:10321–10330

Article  CAS  PubMed  Google Scholar 

Sun JG, Han ZY, Ge XZ, Tian PF (2014) Exploiting cell-free system of recombinant E. coli to synthesize pyrroloquinoline quinone. Biotechnol Bull 27:164–168

Google Scholar 

Tallorin L, Wang JL, Kim WE, Sahu S, Kosa NM, Yang P, Thompson M, Gilson MK, Frazier PI, Burkart MD, Gianneschi NC (2018) Discovering de novo peptide substrates for enzymes using machine learning. Nat Commun 9:5253

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toyama H (2005) Pyrroloquinoline quinone (PQQ) and quinoproteins: is PQQ a vitamine for mammals. J Pestic Sci 30:256–260

Article  CAS  Google Scholar 

Tsai TY, Yang CY, Shih HL, Wang AHJ, Chou SH (2009) Xanthomonas campestris PqqD in the pyrroloquinoline quinone biosynthesis operon adopts a novel saddle-like fold that possibly serves as a PQQ carrier. Proteins-Struct Funct Bioinform 76:1042–1048

Article  CAS  Google Scholar 

Velterop JS, Sellink E, Meulenberg JJM, David S, Bulder I, Postma PW (1995) Synthesis of pyrroloquinoline quinone in-vivo and in-vitro and detection of an intermediate in the biosynthetic-pathway. J Bacteriol 177:5088–5098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wan H, Xia Y, Li JH, Kang Z, Zhou JW (2017) Identification of transporter proteins for PQQ-secretion pathways by transcriptomics and proteomics analysis in Gluconobacter oxydans WSH-003. Front Chem Sci Eng 11:72–88

Article  CAS  Google Scholar 

Wang GL, Zhou YF, Ma K, Zhang F, Ye JB, Zhong GF, Yang XP (2021) Bioconversion of recombinantly produced precursor peptide pqqA into pyrroloquinoline quinone (PQQ) using a cell-free in vitro system. Protein Expr Purif 178:105777

Article  CAS  PubMed 

Comments (0)

No login
gif