Antifungal properties of cathelicidin LL-37: current knowledge and future research directions

Abo Nouh FA, Gezaf SA, Abdel-Azeem AM (2020) Mycotoxins: potential as biocontrol agents. In: Yadav A, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable sgriculture. Fungal biology. Springer, Cham. 

Google Scholar 

Adedara IA, Owumi SE (2023) Neurobehavioral and biochemical responses to artemisinin-based drug and aflatoxin B co-exposure in rats. Mycotoxin Res 39(1):67–80

Article  CAS  PubMed  Google Scholar 

Agerberth B, Buentke E, Bergman P, Eshaghi H, Gabrielsson S, Gudmundsson GH, Scheynius A (2006) Malassezia sympodialis differently affects the expression of LL-37 in dendritic cells from atopic eczema patients and healthy individuals. Allergy 61(4):422–430

Article  CAS  PubMed  Google Scholar 

Aghazadeh H, Memariani H, Ranjbar R, Pooshang Bagheri K (2019) The activity and action mechanism of novel short selective LL-37‐derived anticancer peptides against clinical isolates of Escherichia coli. Chem Biol Drug Des 93(1):75–83

Article  CAS  PubMed  Google Scholar 

Alford MA, Baquir B, Santana FL, Haney EF, Hancock RE (2020) Cathelicidin host defense peptides and inflammatory signaling: striking a balance. Front Microbiol 11:1902

Article  PubMed  PubMed Central  Google Scholar 

Alves V, Araújo GRS, Frases S (2023) Off-label treatments as potential accelerators in the search for the ideal antifungal treatment of cryptococcosis. Future Microbiol 18:127–35

Article  CAS  PubMed  Google Scholar 

Aref S, Nouri S, Moravvej H, Memariani M, Memariani H (2022) Epidemiology of dermatophytosis in Tehran, Iran: a ten-year retrospective study. Arch Iran Med 25(8):502–507

Article  PubMed  Google Scholar 

Arendrup MC, Patterson TF (2017) Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 216(suppl3):S445–S451

Article  CAS  PubMed  Google Scholar 

Atiencia-Carrera MB, Cabezas-Mera FS, Tejera E, Machado A (2022) Prevalence of biofilms in Candida spp. bloodstream infections: a meta-analysis. PLoS ONE 17(2):e0263522

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ballard E, Yucel R, Melchers WJ, Brown AJ, Verweij PE, Warris A (2020) Antifungal activity of antimicrobial peptides and proteins against. J Fungi 6:65

Article  CAS  Google Scholar 

Benjamin AB, Moule MG, Didwania MK, Hardy J, Saenkham-Huntsinger P, Sule P, Nielsen JE, Lin JS, Contag CH, Barron AE, Cirillo JD (2022) Efficacy of cathelicidin-mimetic antimicrobial peptoids against Staphylococcus aureus. Microbiol Spectr 10(3):e00534-22

Article  PubMed  PubMed Central  Google Scholar 

Bongomin F, Gago S, Oladele RO, Denning DW (2017) Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi 3(4):57

Article  Google Scholar 

Brackin AP, Hemmings SJ, Fisher MC, Rhodes J (2021) Fungal genomics in respiratory medicine: what, how and when? Mycopathologia 186:589–608

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braff MH, Hawkins MI, Nardo AD, Lopez-Garcia B, Howell MD, Wong C, Lin K, Streib JE, Dorschner R, Leung DY, Gallo RL (2005) Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 174(7):4271–4278

Article  CAS  PubMed  Google Scholar 

Cassin ME, Ford AJ, Orbach SM, Saverot SE, Rajagopalan P (2016) The design of antimicrobial LL37-modified collagen-hyaluronic acid detachable multilayers. Acta Biomater 40:119–129

Article  CAS  PubMed  Google Scholar 

Celestrino GA, Verrinder Veasey J, Benard G, Sousa MGT (2021) Host immune responses in dermatophytes infection. Mycoses 64(5):477–483

Article  PubMed  Google Scholar 

Chaffin WL (2008) Cell wall proteins. Microbiol Mol Biol Rev 72(3):495–544

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang HT, Tsai PW, Huang HH, Liu YS, Chien TS, Lan CY (2012) LL37 and hBD-3 elevate the β-1, 3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic. Biochem J 441(3):963–970

Article  CAS  PubMed  Google Scholar 

Chen YC, Chen FJ, Lee CH (2021) Effect of antifungal agents, lysozyme and human antimicrobial peptide LL-37 on clinical Candida isolates with high biofilm production. J Med Microbiol 70(2):001283

Article  CAS  Google Scholar 

Childers DS, Avelar GM, Bain JM, Pradhan A, Larcombe DE, Netea MG, Erwig LP, Gow NA, Brown AJ (2020) Epitope shaving promotes fungal immune evasion. MBio 11(4): e00984-20

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciornei CD, Sigurdardóttir T, Schmidtchen A, Bodelsson M (2005) Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 49(7):2845–2850

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Silva LL, Moreno HL, Correia HL, Santana MF, de Queiroz MV (2020) Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl Microbiol Biotechnol 104:1891–1904

Article  PubMed  Google Scholar 

Daly P, Zhou D, Shen D, Chen Y, Xue T, Chen S, Zhang Q, Zhang J, McGowan J, Cai F, Pang G (2022) Genome of Pythium myriotylum uncovers an extensive arsenal of virulence-related genes among the broad-host-range necrotrophic Pythium plant pathogens. Microbiol Spectr 10(4):e02268-21

Article  PubMed  PubMed Central  Google Scholar 

Datta S, Roy A (2021) Antimicrobial peptides as potential therapeutic agents: a review. Int J Pept Res Ther 27:555–577

Article  CAS  Google Scholar 

de Souza GHDA, Rossato L, de Oliveira AR, Simionatto S (2023) Antimicrobial peptides against polymyxin-resistant Klebsiella pneumoniae: a patent review. World J Microbiol Biotechnol 39(3):86

Article  PubMed  PubMed Central  Google Scholar 

Dell’Olmo E, Tiberini A, Sigillo L (2023) Leguminous seedborne pathogens: seed health and sustainable crop management. Plants 12(10):2040

Article  PubMed  PubMed Central  Google Scholar 

den Hertog AL, van Marle J, van Veen HA, Van’t Hof W, Bolscher JGM, Veerman ECI, Amerongen AVN (2005) Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388(Pt 2):689–695

Google Scholar 

den Hertog AL, van Marle J, Veerman EC, Valentijn-Benz M, Nazmi K, Kalay H, Grün CH, Van’t Hof W, Bolscher JG, Nieuw Amerongen AV (2006) The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans. Biol Chem 387(10–11):1495–1502

Google Scholar 

Denardi LB, Weiblen C, Ianiski LB, Stibbe PC, Pinto SC, Santurio JM (2022) Anti-Pythium insidiosum activity of MSI-78, LL-37, and magainin-2 antimicrobial peptides. Braz J Microbiol 53(1):509–512

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desai JV, Bruno VM, Ganguly S, Stamper RJ, Mitchell KF, Solis N, Hill EM, Xu W, Filler SG, Andes DR, Fanning S, Lanni F, Mitchell AP (2013) Regulatory role of glycerol in Candida albicans biofilm formation. MBio 4(2):e00637-12

Article  PubMed  PubMed Central  Google Scholar 

Dijksteel GS, Ulrich MM, Middelkoop E, Boekema BK (2021) Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol 12:616979

Article  PubMed  PubMed Central  Google Scholar 

Dorschner RA, Lopez-Garcia B, Massie J, Kim C, Gallo RL (2004) Innate immune defense of the nail unit by antimicrobial peptides. J Am Acad Dermatol 50(3):343–348

Article  PubMed  Google Scholar 

Durnaś B, Wnorowska U, Pogoda K, Deptuła P, Wątek M, Piktel E, Głuszek S, Gu X, Savage PB, Niemirowicz K, Bucki R (2016) Candidacidal activity of selected ceragenins and human cathelicidin LL-37 in experimental settings mimicking infection sites. PLoS ONE 11(6):e0157242

Article  PubMed  PubMed Central  Google Scholar 

Elmowafy EM, Tiboni M, Soliman ME (2019) Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J Pharm Investig 49:347–380

Article  CAS  Google Scholar 

Ernst JF, Pla J (2011) Signaling the glycoshield: maintenance of the Candida albicans cell wall. Int J Med Microbiol 301(5):378–383

Article  CAS  PubMed  Google Scholar 

Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I (2005) Saccharomy cescerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337(1):95–103

Article  CAS  PubMed  Google Scholar 

Fernández de Ullivarri M, Arbulu S, Garcia-Gutierrez E, Cotter PD (2020) Antifungal peptides as therapeutic agents. Front Cell Infect Microbiol 10:105

Article  PubMed  PubMed Central  Google Scholar 

Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F (2012) Portrait of Candida albicans adherence regulators. PLoS Pathog 8(2):e1002525

Article 

Comments (0)

No login
gif