Al-Mamoori ZZ, Embaby AM, Hussein A, Mahmoud HE (2023) A molecular study on recombinant pullulanase type I from Metabacillus indicus. AMB Express 13:40. https://doi.org/10.1186/s13568-023-01545-8
Article CAS PubMed PubMed Central Google Scholar
Altaf F, Wu S, Kasim V (2021) Role of fibrinolytic enzymes in anti-thrombosis therapy. Front Mol Biosci 8:680397. https://doi.org/10.3389/fmolb.2021.680397
Article CAS PubMed PubMed Central Google Scholar
Anbesaw MS (2022) Bioconversion of keratin wastes using keratinolytic microorganisms to generate value-added products. Int J Biomater 2022:2048031. https://doi.org/10.1155/2022/2048031
Article CAS PubMed PubMed Central Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Article CAS PubMed Google Scholar
Brooke JS (2012) Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25:2–41. https://doi.org/10.1128/cmr.00019-11
Article CAS PubMed PubMed Central Google Scholar
Callegaro K, Brandelli A, Daroit DJ (2019) Beyond plucking: feathers bioprocessing into valuable protein hydrolysates. Waste Manag 95:399–415. https://doi.org/10.1016/j.wasman.2019.06.040
Article CAS PubMed Google Scholar
Cao ZJ, Zhang Q, Wei DK, Chen L, Wang J, Zhang XQ, Zhou MH (2009) Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme. J Ind Microbiol Biotechnol 36:181–188. https://doi.org/10.1007/s10295-008-0469-8
Article CAS PubMed Google Scholar
Embaby AM, Mahmoud HE (2022) Recombinant acetylxylan esterase of Halalkalibacterium halodurans NAH-Egypt: molecular and biochemical study. AMB Express 12:135. https://doi.org/10.1186/s13568-022-01476-w
Article CAS PubMed PubMed Central Google Scholar
Fang Z, Zhang J, Liu B, Du G, Chen J (2013) Biodegradation of wool waste and keratinase production in scale-up fermenter with different strategies by Stenotrophomonas maltophilia BBE11-1. Bioresour Technol 140:286–291. https://doi.org/10.1016/j.biortech.2013.04.091
Article CAS PubMed Google Scholar
Fang Z, Zhang J, Du G, Chen J (2016a) Improved catalytic efficiency, thermophilicity, anti-salt and detergent tolerance of keratinase KerSMD by partially truncation of PPC domain. Sci Rep 6:27953. https://doi.org/10.1038/srep27953
Article CAS PubMed PubMed Central Google Scholar
Fang Z, Zhang J, Liu B, Du G, Chen J (2016b) Enhancement of the catalytic efficiency and thermostability of Stenotrophomonas sp. keratinase KerSMD by domain exchange with KerSMF. Microb Biotechnol 9:35–46. https://doi.org/10.1111/1751-7915.12300
Article CAS PubMed Google Scholar
Fang Z, Sha C, Peng Z, Zhang J, Du G (2019) Protein engineering to enhance keratinolytic protease activity and excretion in Escherichia coli and its scale-up fermentation for high extracellular yield. Enzyme Microb Technol 121:37–44. https://doi.org/10.1016/j.enzmictec.2018.11.003
Article CAS PubMed Google Scholar
Hassan MA, Abol-Fotouh D, Omer AM, Tamer TM, Abbas E (2020) Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: a review. Int J Biol Macromol 154:567–583. https://doi.org/10.1016/j.ijbiomac.2020.03.116
Article CAS PubMed Google Scholar
Huang J, Wu C, Liu D, Yang X, Wu R, Zhang J, Ma C, He H (2017) C-terminal domains of bacterial proteases: structure, function and the biotechnological applications. J Appl Microbiol 122:12–22. https://doi.org/10.1111/jam.13317
Article CAS PubMed Google Scholar
Jankiewicz U, Larkowska E, Swiontek BM (2016) Production, characterization, gene cloning, and nematocidal activity of the extracellular protease from Stenotrophomonas maltophilia N4. J Biosci Bioeng 121:614–618. https://doi.org/10.1016/j.jbiosc.2015.11.011
Article CAS PubMed Google Scholar
Khursade PS, Galande SH, Shiva Krishna P, Prakasham RS (2019) Stenotrophomonas maltophilia Gd2: a potential and novel isolate for fibrinolytic enzyme production. Saudi J Biol Sci 26:1567–1575. https://doi.org/10.1016/j.sjbs.2018.10.014
Article CAS PubMed Google Scholar
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0
Article CAS PubMed Google Scholar
Lasekan A, Abu Bakar F, Hashim D (2013) Potential of chicken by-products as sources of useful biological resources. Waste Manag 33:552–565. https://doi.org/10.1016/j.wasman.2012.08.001
Article CAS PubMed Google Scholar
López-Otín C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437. https://doi.org/10.1074/jbc.R800035200
Article CAS PubMed PubMed Central Google Scholar
Matrawy AA, Khalil AI, Embaby AM (2022) Molecular study on recombinant cold-adapted, detergent- and alkali stable esterase (EstRag) from Lysinibacillus sp.: a member of family VI. World J Microbiol Biotechnol 38:217. https://doi.org/10.1007/s11274-022-03402-5
Article CAS PubMed PubMed Central Google Scholar
Nailufar F, Tjandrawinata RR, Suhartono MT (2016) Thrombus degradation by fibrinolytic enzyme of Stenotrophomonas sp. originated from Indonesian soybean-based fermented food on Wistar rats. Adv Pharmacol Sci 2016:4206908. https://doi.org/10.1155/2016/4206908
Article CAS PubMed PubMed Central Google Scholar
Okoroma EA, Purchase D, Garelick H, Morris R, Neale MH, Windl O, Abiola OO (2013) Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions. PLoS ONE 8:e68099. https://doi.org/10.1371/journal.pone.0068099
Article CAS PubMed PubMed Central Google Scholar
Pan X, Yang J, Xie P, Zhang J, Ke F, Guo X, Liang M, Liu L, Wang Q, Gao X (2021) Enhancement of activity and thermostability of keratinase from Pseudomonas aeruginosa CCTCC AB2013184 by directed evolution with noncanonical amino acids. Front Bioeng Biotechnol 9:770907. https://doi.org/10.3389/fbioe.2021.770907
Article PubMed PubMed Central Google Scholar
Pei X, Wang Q, Meng L, Li J, Yang Z, Yin X, Yang L, Chen S, Wu J (2015) Chaperones-assisted soluble expression and maturation of recombinant co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature. J Biotechnol 203:9–16. https://doi.org/10.1016/j.jbiotec.2015.03.004
Article CAS PubMed Google Scholar
Peng Z, Zhang J, Du G, Chen J (2019) Keratin waste recycling based on microbial degradation: mechanisms and prospects. ACS Sustain Chem Eng 7:9727–9736. https://doi.org/10.1021/acssuschemeng.9b01527
Qu F, Chen Q, Ding Y, Liu Z, Zhao Y, Zhang X, Liu Z, Chen J (2018) Isolation of a feather-degrading strain of bacterium from spider gut and the purification and identification of its three key enzymes. Mol Biol Rep 45:1681–1689. https://doi.org/10.1007/s11033-018-4311-8
Article CAS PubMed Google Scholar
Rajput R, Tiwary E, Sharma R, Gupta R (2012) Swapping of pro-sequences between keratinases of Bacillus licheniformis and Bacillus pumilus: altered substrate specificity and thermostability. Enzyme Microb Technol 51:131–138. https://doi.org/10.1016/j.enzmictec.2012.04.010
Article CAS PubMed Google Scholar
Sinha R, Khare S (2013) Thermostable proteases. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht, pp 859–880
Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K (2006) Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng 102:73–81. https://doi.org/10.1263/jbb.102.73
Article CAS PubMed Google Scholar
Tiwary E, Gupta R (2010) Extracellular expression of keratinase from Bacillus licheniformis ER-15 in Escherichia coli. J Agric Food Chem 58:8380–8385. https://doi.org/10.1021/jf100803g
Article CAS PubMed Google Scholar
Trifonova A, Strateva T (2019) Stenotrophomonas maltophilia—a low-grade pathogen with numerous virulence factors. Infect Dis 51:168–178. https://doi.org/10.1080/23744235.2018.1531145
Tsiroulnikov K, Rezai H, Bonch-Osmolovskaya E, Nedkov P, Gousterova A, Cueff V, Godfroy A, Barbier G, Métro F, Chobert JM, Clayette P, Dormont D, Grosclaude J, Haertlé T (2004) Hydrolysis of the amyloid prion protein and nonpathogenic meat and bone meal by anaerobic thermophilic prokaryotes and streptomyces subspecies. J Agric Food Chem 52:6353–6360. https://doi.org/10.1021/jf0493324
Comments (0)