Bhalala US, Koehler RC, Kannan S (2014) Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr 2:144. https://doi.org/10.3389/fped.2014.00144. (in eng)
Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36(2):118–124. https://doi.org/10.1002/glia.1101. (in eng)
Article CAS PubMed Google Scholar
Parkhurst CN et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609. https://doi.org/10.1016/j.cell.2013.11.030. (in eng)
Article CAS PubMed PubMed Central Google Scholar
Paolicelli RC et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. https://doi.org/10.1126/science.1202529. (in eng)
Article CAS PubMed Google Scholar
Schafer DP, Stevens B (2015) Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol 7(10):a020545. https://doi.org/10.1101/cshperspect.a020545. (in eng)
Article PubMed PubMed Central Google Scholar
Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309. https://doi.org/10.1038/nrn1078. (in eng)
Article CAS PubMed Google Scholar
Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23. https://doi.org/10.1038/nrn3379. (in eng)
Article CAS PubMed Google Scholar
Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430. https://doi.org/10.3389/fncel.2014.00430. (in eng)
Article PubMed PubMed Central Google Scholar
Sharon G, Sampson TR, Geschwind DH, Mazmanian SK (2016) The central nervous system and the gut microbiome. Cell 167(4):915–932. https://doi.org/10.1016/j.cell.2016.10.027. (in eng)
Article CAS PubMed PubMed Central Google Scholar
Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712. https://doi.org/10.1038/nrn3346. (in eng)
Article CAS PubMed Google Scholar
Samami E, Aleebrahim-Dehkordi E, Mohebalizadeh M, Yaribash S, Saghazadeh A, Rezaei N (2023) Inosine, gut microbiota, and cancer immunometabolism. Am J Physiol Endocrinol Metab 324(1):E1-e8. https://doi.org/10.1152/ajpendo.00207.2022. (in eng)
Article CAS PubMed Google Scholar
Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36(5):305–12. https://doi.org/10.1016/j.tins.2013.01.005. (in eng)
Article CAS PubMed Google Scholar
Minakova E, Warner BB (2018) Maternal immune activation, central nervous system development and behavioral phenotypes. Birth Defects Res 110(20):1539–1550. https://doi.org/10.1002/bdr2.1416. (in eng)
Article CAS PubMed Google Scholar
Knuesel I et al (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10(11):643–660. https://doi.org/10.1038/nrneurol.2014.187. (in eng)
Article CAS PubMed Google Scholar
Smith SE, Li J, Garbett K, Mirnics K, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27(40):10695–10702. https://doi.org/10.1523/jneurosci.2178-07.2007. (in eng)
Article CAS PubMed PubMed Central Google Scholar
Shi L, Tu N, Patterson PH (2005) Maternal influenza infection is likely to alter fetal brain development indirectly: the virus is not detected in the fetus. Int J Dev Neurosci 23(2–3):299–305. https://doi.org/10.1016/j.ijdevneu.2004.05.005. (in eng)
Mednick SA, Machon RA, Huttunen MO, Bonett D (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45(2):189–192. https://doi.org/10.1001/archpsyc.1988.01800260109013. (in eng)
Article CAS PubMed Google Scholar
Li XJ et al (2015) Human cytomegalovirus infection dysregulates the localization and stability of NICD1 and Jag1 in neural progenitor cells. J Virol 89(13):6792–6804. https://doi.org/10.1128/jvi.00351-15. (in eng)
Article CAS PubMed PubMed Central Google Scholar
Ludwig RJ et al (2017) Mechanisms of autoantibody-induced pathology. Front Immunol 8:603. https://doi.org/10.3389/fimmu.2017.00603. (in eng)
Article CAS PubMed PubMed Central Google Scholar
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) “Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030. (in eng)
Article CAS PubMed Google Scholar
Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M (2012) IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol 2012:985646. https://doi.org/10.1155/2012/985646. (in eng)
Article CAS PubMed Google Scholar
Mader S, Brimberg L, Diamond B (2017) The role of brain-reactive autoantibodies in brain pathology and cognitive impairment. Front Immunol 8:1101. https://doi.org/10.3389/fimmu.2017.01101. (in eng)
Article CAS PubMed PubMed Central Google Scholar
Xu XP, Liu WG, Xu QM, Zhu XQ, Chen J (2019) Evaluation of immune protection against Toxoplasma gondii infection in mice induced by a multi-antigenic DNA vaccine containing TgGRA24, TgGRA25 and TgMIC6. Parasite 26:58. https://doi.org/10.1051/parasite/2019050. (in eng) Évaluation de la protection immunitaire contre l’infection par Toxoplasma gondii chez la souris, induite par un vaccin à ADN multi-antigénique contenant TgGRA24, TgGRA25 et TgMIC6
Article PubMed PubMed Central Google Scholar
Jones KL, Van de Water J (2019) Maternal autoantibody related autism: mechanisms and pathways. Mol Psychiatry 24(2):252–265. https://doi.org/10.1038/s41380-018-0099-0. (in eng)
Article CAS PubMed Google Scholar
Braunschweig D et al (2013) Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 3(7):e277. https://doi.org/10.1038/tp.2013.50. (in eng)
Article CAS PubMed PubMed Central Google Scholar
Martínez-Cerdeño V et al (2016) Prenatal exposure to autism-specific maternal autoantibodies alters proliferation of cortical neural precursor cells, enlarges brain, and increases neuronal size in adult animals. Cereb Cortex 26(1):374–383. https://doi.org/10.1093/cercor/bhu291. (in eng)
Zhang H et al (2016) Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun 7. https://doi.org/10.1038/ncomms11773 (in eng)
Braunschweig D et al (2008) Autism: maternally derived antibodies specific for fetal brain proteins. Neurotoxicology 29(2):226–231. https://doi.org/10.1016/j.neuro.2007.10.010. (in eng)
Article CAS PubMed Google Scholar
Carter M, Casey S, O’Keeffe GW, Gibson L, Gallagher L, Murray DM (2022) Maternal immune activation and interleukin 17A in the pathogenesis of autistic spectrum disorder and why it matters in the COVID-19 era. Front Psychiatry 13:823096. https://doi.org/10.3389/fpsyt.2022.823096. (in eng)
Article PubMed PubMed Central Google Scholar
Bauman MD et al (2013) Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry 3(7):e278. https://doi.org/10.1038/tp.2013.47. (in eng)
Article CAS PubMed PubMed Central Google Scholar
Singer HS, Morris C, Gause C, Pollard M, Zimmerman AW, Pletnikov M (2009) Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: a pregnant dam mouse model. J Neuroimmunol 211(1–2):39–48. https://doi.org/10.1016/j.jneuroim.2009.03.011. (in eng)
Article CAS PubMed Google Scholar
Bünger I et al (2023) Maternal synapsin autoantibodies are associated with neurodevelopmental delay. Front Immunol 14:1101087. https://doi.org/10.3389/fimmu.2023.1101087. (in eng)
Article CAS PubMed PubMed Central Google Scholar
Coutinho E et al (2017) CASPR2 autoantibodies are raised during pregnancy in mothers of children with mental retardation and disorders of psychological development but not autism. J Neurol Neurosurg Psychiatry 88(9):718–721. https://doi.org/10.1136/jnnp-2016-315251. (in eng)
Deverman BE, Patterson PH (2009) Cytokines and CNS development. Neuron 64(1):61–78. https://doi.org/10.1016/j.neuron.2009.09.002. (in eng)
Comments (0)