Ethyl Isothiocyanate as a Novel Antifungal Agent Against Candida albicans

Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128

Article  PubMed  PubMed Central  Google Scholar 

Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I (2021) Candida albicans-the virulence factors and clinical manifestations of infection. J Fungi 7:1–19

Article  Google Scholar 

Kojic EM, Darouiche RO (2004) Candida infections of medical devices. Clin Microbiol Rev 17:255–267

Article  PubMed  PubMed Central  Google Scholar 

Privett BJ, Nutz ST, Schoenfisch MH (2010) Efficacy of surface-generated nitric oxide against Candida albicans adhesion and biofilm formation. Biofouling 26:973–983

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campbell BC, Chan KL, Kim JH (2012) Chemosensitization as a means to augment commercial antifungal agents. Front Microbiol 3:1–20

Article  Google Scholar 

Scorzoni L, de Paula e Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM (2017) Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol 8:1–23

Article  Google Scholar 

Van Daele R, Spriet I, Wauters J, Maertens J, Mercier T, Van Hecke S, Brüggemann R (2019) Antifungal drugs: what brings the future? Med Mycol 57:S328–S343

Article  PubMed  Google Scholar 

Thakre A, Zore G, Kodgire S et al (2017) OUP accepted manuscript. Med Mycol 56:565–578

Google Scholar 

Singla RK, Dubey AK (2019) Molecules and metabolites from natural products as inhibitors of biofilm in Candida spp. pathogens. Curr Top Med Chem 19:2567–2578

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le TN, Chiu C, Hsieh P (2020) And microgreens: an updated overview from a nutraceutical perspective. Plant Sci Today 9:1–23

Google Scholar 

Kurt Ş, Güneş U, Soylu EM (2011) In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum. Pest Manag Sci 67:869–875

Article  CAS  PubMed  Google Scholar 

Smolinska U, Morra MJ, Knudsen GR, James RL (2003) Isothiocyanates produced by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis 87:407–412

Article  CAS  PubMed  Google Scholar 

Plaszkó T, Szűcs Z, Vasas G, Gonda S (2021) Effects of glucosinolate-derived isothiocyanates on fungi: A comprehensive review on direct effects, mechanisms, structure-activity relationship data and possible agricultural applications. J Fungi 7:1–38

Article  Google Scholar 

Pereira C, Calado AM, Sampaio AC (2020) The effect of benzyl isothiocyanate on Candida albicans growth, cell size, morphogenesis, and ultrastructure. World J Microbiol Biotechnol 36:1–12

Article  Google Scholar 

Raut JS, Shinde RB, Chauhan NM, Mohan Karuppayil S (2013) Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 29:87–96

Article  CAS  PubMed  Google Scholar 

Jadhav A, Mortale S, Halbandge S, Jangid P, Patil R, Gade W, Kharat K, Karuppayil SM (2017) The dietary food components capric acid and caprylic acid inhibit virulence factors in Candida albicans through multitargeting. J Med Food 20:1083–1090

Article  CAS  PubMed  Google Scholar 

Shinde RB, Raut JS, Karuppayil MS (2012) Biofilm formation by Candida albicans on various prosthetic materials and its fluconazole sensitivity: A kinetic study. Mycoscience 53:220–226

Article  CAS  Google Scholar 

Raut JS, Bansode BS, Jadhav AK, Karuppayil SM (2017) Activity of allyl isothiocyanate and its synergy with fluconazole against Candida albicans biofilms. J Microbiol Biotechnol 27:685–693

Article  PubMed  Google Scholar 

Priya A, Pandian SK (2020) Piperine impedes biofilm formation and hyphal morphogenesis of Candida albicans. Front Microbiol 11:1–18

Article  Google Scholar 

Radhakrishnan VS, Dwivedi SP, Siddiqui MH, Prasad T (2018) In vitro studies on oxidative stress-independent, ag nanoparticles-induced cell toxicity of Candida albicans, an opportunistic pathogen. Int J Nanomedicine 13:91–96

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahamad I, Bano F, Anwer R, Srivastava P, Kumar R, Fatma T (2022) Antibiofilm activities of biogenic silver nanoparticles against Candida albicans. Front Microbiol 12:1–13

Article  Google Scholar 

Zore GB, Thakre AD, Jadhav S, Karuppayil SM (2011) Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 18:1181–1190

Article  CAS  PubMed  Google Scholar 

Ahmad A, Khan A, Manzoor N, Khan LA (2010) Evolution of ergosterol biosynthesis inhibitors as fungicidal against Candida. Microb Pathog 48:35–41

Article  CAS  PubMed  Google Scholar 

Vila T, Romo JA, Pierce CG, McHardy SF, Saville SP, Lopez-Ribot JL (2017) Targeting Candida albicans filamentation for antifungal drug development. Virulence 8:150–158

Article  CAS  PubMed  Google Scholar 

Hasegawa S, Yamada Y, Iwanami N, Nakayama Y, Nakayama H, Iwatani S, Oura T, Kajiwara S (2019) Identification and functional characterization of Candida albicans mannose–ethanolamine phosphotransferase (Mcd4p). Curr Genet 65:1251–1261

Article  CAS  PubMed  Google Scholar 

Choi H, Lee DG (2015) Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction. Biochimie 115:108–115

Article  CAS  PubMed  Google Scholar 

Rajput SB, Mohan Karuppayil S (2013) Small molecules inhibit growth, viability and ergosterol biosynthesis in Candida albicans. Springerplus 2:1–6

Article  Google Scholar 

Zorić N, Kosalec I, Tomić S, Bobnjarić I, Jug M, Vlainić T, Vlainić J (2017) Membrane of Candida albicans as a target of berberine. BMC Complement Altern Med 17:1–10

Article  Google Scholar 

Chang W, Li Y, Zhang L, Cheng A, Lou H (2012) Retigeric acid B attenuates the virulence of Candida albicans via inhibiting adenylyl cyclase activity targeted by enhanced farnesol production. PLoS ONE 7:1–10

Google Scholar 

Zou L, Mei Z, Guan T, Zhang B, Deng Q (2021) Underlying mechanisms of the effect of minocycline against Candida albicans biofilms. Exp Ther Med 21:1–9

Article  Google Scholar 

Park YK, Shin J, Lee H-Y, Kim HD, Kim J (2021) Inhibition of Ras1-MAPK pathways for hypha formation by novel drug candidates in. BioRxtv 1:1–44

Google Scholar 

Cavalheiro M, Teixeira MC (2018) Candida biofilms: threats, challenges, and promising strategies. Front Med 5:1–15

Article  Google Scholar 

Garip Z, Harran FT (2021) Silkworm in pharmacology and toxicology. Int J Vet Anim Res 4:34–38

Google Scholar 

Comments (0)

No login
gif