Sobotka L, Forbes A. Basics in clinical nutrition. Galen, Prague. 2019. ISBN 978-80-7492-427-9.
Wells JC, Sawaya AL, Wibaek R, et al. The double burden of malnutrition: aetiological pathways and consequences for health. Lancet. 2020;395(10217):75–88. https://doi.org/10.1016/S0140-6736(19)32472-9.
Boah M, Azupogo F, Amporfro DA, Abada LA. The epidemiology of undernutrition and its determinants in children under five years in Ghana. PLoS ONE. 2019;14(7):1–23. https://doi.org/10.1371/journal.pone.0219665.
WHO. Obesity and overweight. World Heal Organ. Published online 2020. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed on 15 Apr 2023.
Headey D, Heidkamp R, Osendarp S, et al. Impacts of COVID-19 on childhood malnutrition and nutrition-related mortality. Lancet. 2020;396(10250):519–21. https://doi.org/10.1016/S0140-6736(20)31647-0.
Article CAS PubMed PubMed Central Google Scholar
Zemrani B, Gehri M, Masserey E, Knob C, Pellaton R. A hidden side of the COVID-19 pandemic in children: the double burden of undernutrition and overnutrition. Int J Equity Health. 2021;20(1):1–4. https://doi.org/10.1186/s12939-021-01390-w.
Littlejohn P, Finlay BB. When a pandemic and an epidemic collide: COVID-19, gut microbiota, and the double burden of malnutrition. BMC Med. 2021;19(1):1–8. https://doi.org/10.1186/s12916-021-01910-z.
Roseboom TJ. Epidemiological evidence for the developmental origins of health and disease: Effects of prenatal undernutrition in humans. J Endocrinol. 2019;242(1):T135–44. https://doi.org/10.1530/JOE-18-0683.
Article CAS PubMed Google Scholar
Bautista CJ, Bautista RJ, Montaño S, et al. Effects of maternal protein restriction during pregnancy and lactation on milk composition and offspring development. Br J Nutr. 2019;122(2):141–51. https://doi.org/10.1017/S0007114519001120.
Article CAS PubMed Google Scholar
Forrester TE, Badaloo AV, Boyne MS, et al. Prenatal factors contribute to the emergence of kwashiorkor or marasmus in severe undernutrition: Evidence for the predictive adaptation model. PLoS ONE. 2012;7(4):8–11. https://doi.org/10.1371/journal.pone.0035907.
Vaag AA, Grunnet LG, Arora GP, Brøns C. The thrifty phenotype hypothesis revisited. Diabetologia. 2012;55(8):2085–8. https://doi.org/10.1007/s00125-012-2589-y.
Article CAS PubMed PubMed Central Google Scholar
Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Int J Epidemiol. 2013;42(5):1215–22. https://doi.org/10.1093/ije/dyt133.
Article CAS PubMed Google Scholar
Nikolaus Cassandra, Luciana HE, Anna Z-K, Ka SI. Risk of food insecurity in youg adulthood and logitudinal change in cardiometabolic Health: Evidence from the National Longitudinal Study of Adolescent to Adult Health. J Nutr. Published online. 2022. https://doi.org/10.1093/jn/nxac0055.
Dos Reis Araujo T, Muniz MRR, Alves BL, Dos Santos LMB, Bonfim MF, da Silva Junior JA, Vettorazzi JF, Zoppi CC, Carneiro EM. Tauroursodeoxycholic acid improves glucose tolerance and reduces adiposity in normal protein and malnourished mice fed a high-fat diet. Food Res Int. 2022 Jun;156:111331. https://doi.org/10.1016/j.foodres.2022.111331. Epub 2022 May 6. PMID: 35651081.
Dalvi PS, Yang S, Swain N, et al. Long-term metabolic effects of malnutrition: Liver steatosis and insulin resistance following early-life protein restriction. PLoS ONE. 2018;13(7):1–22. https://doi.org/10.1371/journal.pone.0199916.
Cappelli APG, Zoppi CC, Silveira LR, et al. Reduced glucose-induced insulin secretion in low-protein-fed rats is associated with altered pancreatic islets redox status. J Cell Physiol. 2018;233(1):486–96. https://doi.org/10.1002/jcp.25908.
Article CAS PubMed Google Scholar
Vaiserman A, Lushchak O. Prenatal malnutrition-induced epigenetic dysregulation as a risk factor for type 2 diabetes. Int J Genomics. 2019;2019. https://doi.org/10.1155/2019/3821409.
Filteau S, Praygod G, Rehman AM, et al. Prior undernutrition and insulin production several years later in Tanzanian adults. Am J Clin Nutr. 2021;113(6):1600–8. https://doi.org/10.1093/ajcn/nqaa438.
Article PubMed PubMed Central Google Scholar
Delghingaro-Augusto V, Ferreira F, Bordin S, et al. A low protein diet alters gene expression in rat pancreatic islets. J Nutr. 2004;134(2):321–7. https://doi.org/10.1093/jn/134.2.321.
Article CAS PubMed Google Scholar
De Rooij SR, Painter RC, Phillips DIW, et al. Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care. 2006;29(8):1897–901. https://doi.org/10.2337/dc06-0460.
Ferreira F, Barbosa HCL, Stoppiglia LF, et al. Decreased insulin secretion in islets from rats fed a low protein diet is associated with a reduced PKAα expression. J Nutr. 2004;134(1):63–7. https://doi.org/10.1093/jn/134.1.63.
Article CAS PubMed Google Scholar
Filiputti E, Ferreira F, Souza KLA, et al. Impaired insulin secretion and decreased expression of the nutritionally responsive ribosomal kinase protein S6K–1 in pancreatic islets from malnourished rats. Life Sci. 2008;82(9–10):542–8. https://doi.org/10.1016/j.lfs.2007.12.012.
Article CAS PubMed Google Scholar
de Oliveira Lira A, de Brito Alves JL, Fernandes MP, et al. Maternal low protein diet induces persistent expression changes in metabolic genes in male rats. World J Diabetes. 2020;11(5):182–92. https://doi.org/10.4239/wjd.v11.i5.182.
Article PubMed PubMed Central Google Scholar
Leite NC, De Paula F, Borck PC, et al. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice. Sci Rep. 2016;6(August):1–9. https://doi.org/10.1038/srep33464.
Alves BL, Araújo TD, Guimarães DS, Zoppi CC, Figueiredo MS, Carneiro EM. Amino acid restriction alters survival mechanisms in pancreatic beta cells: possible role of the PI3K/Akt pathway. Eur J Nutr. 2021;60(7):3947–57. https://doi.org/10.1007/s00394-021-02568-2.
Article CAS PubMed PubMed Central Google Scholar
Mateus Gonçalves L, Vettorazzi JF, Vanzela EC, et al. Amino acid restriction increases β-cell death under challenging conditions. J Cell Physiol. 2019;234(10):16679–84. https://doi.org/10.1002/jcp.28389.
Article CAS PubMed Google Scholar
Batista TM, Ribeiro RA, da Silva PMR, et al. Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. Mol Nutr Food Res. 2013;57(3):423–34. https://doi.org/10.1002/mnfr.201200345.
Article CAS PubMed Google Scholar
Arantes VC, Teixeira VPA, Reis MAB, et al. Expression of PDX-1 is reduced in pancreatic islets from pups of rat dams fed a low protein diet during gestation and lactation. J Nutr. 2002;132(10):3030–5. https://doi.org/10.1093/jn/131.10.3030.
Article CAS PubMed Google Scholar
Marroquí L, Batista TM, Gonzalez A, et al. Functional and structural adaptations in the pancreatic α-cell and changes in glucagon signaling during protein malnutrition. Endocrinology. 2012;153(4):1663–72. https://doi.org/10.1210/en.2011-1623.
Article CAS PubMed Google Scholar
Garofano A, Czernichow P, Brøant B, Inserm U, Debrø HR. Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Published online. 1998:1114–20. Accessed on 12 Apr 2023.
Rafacho A, Giozzet VAG, Boschero AC, et al. Reduced pancreatic β-cell mass is associated with decreased FoxO1 and Erk1/2 protein phosphorylation in low-protein malnourished rats. Brazilian J Med Biol Res. 2009;42(10):935–41. https://doi.org/10.1590/S0100-879X2009001000010.
Guizoni DM, Freitas IN, Victorio JA, et al. Taurine treatment reverses protein malnutrition-induced endothelial dysfunction of the pancreatic vasculature: The role of hydrogen sulfide. Metabolism. 2021;116: 154701. https://doi.org/10.1016/j.metabol.2021.154701.
Article CAS PubMed Google Scholar
Snoeck A, Remacle C, Reusens B, Hoet JJ. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 1990;57:107–8. https://doi.org/10.1159/000243170.
Article CAS PubMed Google Scholar
Da Silva PMR, Batista TM, Ribeiro RA, Zoppi CC, Boschero AC, Carneiro EM. Decreased insulin secretion in islets from protein malnourished rats is associated with impaired glutamate dehydrogenase function: Effect of leucine supplementation. Metabolism. 2012;61(5):721–32. https://doi.org/10.1016/j.metabol.2011.09.012.
Article CAS PubMed Google Scholar
Skelin Klemen M, Dolenšek J, Slak Rupnik M, Stožer A. The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets. 2017;9(6):109–39. https://doi.org/10.1080/19382014.2017.1342022.
Article CAS PubMed PubMed Central Google Scholar
Shirakawa J, Terauchi Y. Newer perspective on the coupling between glucose-mediated signaling and β-cell functionality. Endocr J. 2020;67(1):1–8. https://doi.org/10.1507/endocrj.EJ19-0335.
Article CAS PubMed Google Scholar
MacDonald PE, Joseph JW, Rorsman P. Glucose-sensing mechanisms in pancreatic β-cells. Philos Trans R Soc B Biol Sci. 2005;360(1464):2211–25. https://doi.org/10.1098/rstb.2005.1762.
Rorsman P, Ashcroft FM. Pancreatic β-cell electrical activity and insulin secretion: Of mice and men. Physiol Rev. 2018;98(1):117–214. https://doi.org/10.1152/physrev.00008.2017.
Comments (0)