Frei IC, et al. Adipose mTORC2 is essential for arborization of sensory neurons in white adipose tissue and whole-body energy homeostasis. bioRxiv. 2022. https://doi.org/10.1101/2022.03.21.485116.
Sasaki N, Maeda R, Ozono R, Yoshimura K, Nakano Y, Higashi Y. Adipose tissue insulin resistance predicts the incidence of hypertension: The hiroshima study on glucose metabolism and cardiovascular diseases. Hypertens Res. 2022. https://doi.org/10.1038/s41440-022-00987-0.
Inoue O, et al. Single cell transcriptomics identifies adipose tissue CD271+ progenitors for enhanced angiogenesis in limb ischemia. bioRxiv. 2023. https://doi.org/10.1101/2023.02.09.527726.
Article PubMed PubMed Central Google Scholar
Castela I, et al. Decreased adiponectin/leptin ratio relates to insulin resistance in adults with obesity. Am J Physiol-Endocrinolo Metabol. 2023. https://doi.org/10.1152/ajpendo.00273.2022.
Soler-Vázquez MC, Mera P, Zagmutt S, Serra D, Herrero L. New approaches targeting brown adipose tissue transplantation as a therapy in obesity. Biochem Pharmacol. 2018. https://doi.org/10.1016/j.bcp.2018.07.022.
Emont MP, et al. A single-cell atlas of human and mouse white adipose tissue. Nature. 2022. https://doi.org/10.1038/s41586-022-04518-2.
Article PubMed PubMed Central Google Scholar
Ungefroren H, Gieseler F, Fliedner S, Lehnert H. Obesity and cancer. Horm Mol Biol Clin Invest. 2015. https://doi.org/10.1515/hmbci-2014-0046.
Pezeshkian M, et al. Fatty acid composition of epicardial and subcutaneous human adipose tissue. Metab Syndr Relat Disord. 2009. https://doi.org/10.1089/met.2008.0056.
Ghahremanpour F, Firoozrai M, Darabi M, Zavarei A, Mohebbi A. Adipose tissue trans fatty acids and risk of coronary artery disease: a case-control study. Ann Nutr Metab. 2008. https://doi.org/10.1159/000114291.
Poissonnet CM, Burdi AR, Garn SM. The chronology of adipose tissue appearance and distribution in the human fetus. Early Human Dev. 1984. https://doi.org/10.1016/0378-3782(84)90106-3.
Spalding KL, et al. Impact of fat mass and distribution on lipid turnover in human adipose tissue. Nat Commun. 2017. https://doi.org/10.1038/ncomms15253.
Article PubMed PubMed Central Google Scholar
Sanchez-Gurmaches J, Hsiao W-Y, Guertin DA. Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre. Stem Cell Rep. 2015. https://doi.org/10.1016/j.stemcr.2015.02.008.
Sugihara H, Yonemitsu N, Miyabara S, Yun K. Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation. 1986. https://doi.org/10.1111/j.1432-0436.1986.tb00381.x.
Wei Wu J, Wang SP, Casavant S, Moreau A, Yang GS, Mitchell GA. Fasting energy homeostasis in mice with adipose deficiency of desnutrin/adipose triglyceride lipase. Endocrinology. 2012. https://doi.org/10.1210/en.2011-1518.
Morak M, et al. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues. Mol Cell Proteomics. 2012. https://doi.org/10.1074/mcp.M111.015743.
Article PubMed PubMed Central Google Scholar
Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol. 2014. https://doi.org/10.1016/j.yfrne.2014.04.001.
Article PubMed PubMed Central Google Scholar
Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010. https://doi.org/10.1016/j.mce.2009.08.018.
Merklin RJ. Growth and distribution of human fetal brown fat. Anat Rec. 1974. https://doi.org/10.1002/ar.1091780311.
Loncar D. Development of thermogenic adipose tissue. Int J Dev Biol. 1991. Available: https://www.ncbi.nlm.nih.gov/pubmed/1814413.
Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013. https://doi.org/10.1038/nm.3361.
Cypess AM, et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med. 2013. https://doi.org/10.1038/nm.3112.
Article PubMed PubMed Central Google Scholar
Khanna A, Branca RT. Detecting brown adipose tissue activity with BOLD MRI in mice. Magn Reson Med. 2012. https://doi.org/10.1002/mrm.24118.
Article PubMed PubMed Central Google Scholar
Frontini A, Cinti S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 2010. https://doi.org/10.1016/j.cmet.2010.03.004.
White JD, Dewal RS, Stanford KI. The beneficial effects of brown adipose tissue transplantation. Mol Aspects Med. 2019. https://doi.org/10.1016/j.mam.2019.06.004.
Article PubMed PubMed Central Google Scholar
Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012. https://doi.org/10.1016/j.cell.2012.09.010.
Article PubMed PubMed Central Google Scholar
Frontini A, Cinti S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 2010. https://doi.org/10.1016/j.cmet.2010.03.004.
McNeill BT, Suchacki KJ, Stimson RH. MECHANISMS IN ENDOCRINOLOGY: Human brown adipose tissue as a therapeutic target: warming up or cooling down? Eur J Endocrinol. 2021. https://doi.org/10.1530/EJE-20-1439.
Article PubMed PubMed Central Google Scholar
Riis-Vestergaard MJ, et al. Beta-1 and not beta-3 adrenergic receptors may be the primary regulator of human brown adipocyte metabolism. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/clinem/dgz298.
Blondin DP, et al. Human brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell Metab. 2020. https://doi.org/10.1016/j.cmet.2020.07.005.
Kajimura S, Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol. 2014. https://doi.org/10.1146/annurev-physiol-021113-170252.
Bertholet AM, Kirichok Y. The mechanism FA-dependent H+ transport by UCP1. Brown Adipose Tissue. 2018. https://doi.org/10.1007/164_2018_138.
de Jong JM, Larsson O, Cannon B, Nedergaard J. A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab. 2015. https://doi.org/10.1152/ajpendo.00023.2015.
Cheng L, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021. https://doi.org/10.1080/21623945.2020.1870060.
Article PubMed PubMed Central Google Scholar
Ussar S, et al. ASC-1, PAT2 and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci Transl Med. 2014. https://doi.org/10.1126/scitranslmed.3008490.
Article PubMed PubMed Central Google Scholar
Medina-Gómez G. Mitochondria and endocrine function of adipose tissue. Best Pract Res Clin Endocrinol Metab. 2012. https://doi.org/10.1016/j.beem.2012.06.002.
Wankhade UD, Shen M, Yadav H, Thakali KM. Novel browning agents, mechanisms, and therapeutic potentials of brown adipose tissue. Biomed Res Int. 2016. https://doi.org/10.1155/2016/2365609.
Article PubMed PubMed Central Google Scholar
Wu J, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012. https://doi.org/10.1016/j.cell.2012.05.016.
Article PubMed PubMed Central Google Scholar
Sharp LZ, et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0049452.
Article PubMed PubMed Central Google Scholar
Mahadik SR, Lele RD, Saranath D, Seth A, Parikh V. Uncoupling protein-2 (UCP2) gene expression in subcutaneous and omental adipose tissue of Asian Indians: Relationship to adiponectin and parameters of metabolic syndrome. Adipocyte. 2012. https://doi.org/10.4161/adip.19671.
Comments (0)