Yamauchi K, Furuta T, Okamoto S, Takahashi M, Koike M, Hioki H (2022) Protocol for multi-scale light microscopy/electron microscopy neuronal imaging in mouse brain tissue. STAR Protoc 3(3):101508. https://doi.org/10.1016/j.xpro.2022.101508
Article CAS PubMed PubMed Central Google Scholar
Swanson JL, Chin PS, Romero JM, Srivastava S, Ortiz-Guzman J, Hunt PJ, Arenkiel BR (2022) Advancements in the quest to map, monitor, and manipulate neural circuitry. Front Neural Circuits 16:886302. https://doi.org/10.3389/fncir.2022.886302
Article CAS PubMed PubMed Central Google Scholar
Beirowski B, Nogradi A, Babetto E, Garcia-Alias G, Coleman MP (2010) Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration. J Neuropathol Exp Neurol 69(5):455–472. https://doi.org/10.1097/NEN.0b013e3181da84db
Gomez-Gaviro MV, Sanderson D, Ripoll J, Desco M (2020) Biomedical applications of tissue clearing and three-dimensional imaging in health and disease. iScience 23(8):101432. https://doi.org/10.1016/j.isci.2020.101432
Article CAS PubMed PubMed Central Google Scholar
Furuta T, Yamauchi K, Okamoto S, Takahashi M, Kakuta S, Ishida Y, Takenaka A, Yoshida A et al (2022) Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method, ScaleSF. iScience 25(1):103601. https://doi.org/10.1016/j.isci.2021.103601
Article CAS PubMed Google Scholar
Glaser AK, Bishop KW, Barner LA, Susaki EA, Kubota SI, Gao G, Serafin RB, Balaram P et al (2022) A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues. Nat Methods 19(5):613–619. https://doi.org/10.1038/s41592-022-01468-5
Article CAS PubMed PubMed Central Google Scholar
Richardson DS, Guan W, Matsumoto K, Pan C, Chung K, Erturk A, Ueda HR, Lichtman JW (2021) Tissue clearing. Nat Rev Methods Primers 1(1). https://doi.org/10.1038/s43586-021-00080-9
Susaki EA, Shimizu C, Kuno A, Tainaka K, Li X, Nishi K, Morishima K, Ono H et al (2020) Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nat Commun 11(1):1982. https://doi.org/10.1038/s41467-020-15906-5
Article CAS PubMed PubMed Central Google Scholar
Fulton KA, Briggman KL (2021) Permeabilization-free en bloc immunohistochemistry for correlative microscopy. Elife 10. https://doi.org/10.7554/eLife.63392
Garner B (2010) Lipids and Alzheimer’s disease. Biochim Biophys Acta 1801(8):747–749. https://doi.org/10.1016/j.bbalip.2010.06.003
Article CAS PubMed Google Scholar
Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M, Zafar S, Kamran SKS et al (2019) Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 18(1):26. https://doi.org/10.1186/s12944-019-0965-z
Article PubMed PubMed Central Google Scholar
Brekk OR, Honey JR, Lee S, Hallett PJ, Isacson O (2020) Cell type-specific lipid storage changes in Parkinson’s disease patient brains are recapitulated by experimental glycolipid disturbance. Proc Natl Acad Sci U S A 117(44):27646–27654. https://doi.org/10.1073/pnas.2003021117
Article CAS PubMed PubMed Central Google Scholar
Jove M, Pradas I, Dominguez-Gonzalez M, Ferrer I, Pamplona R (2019) Lipids and lipoxidation in human brain aging. Mitochondrial ATP-synthase as a key lipoxidation target. Redox Biol 23:101082. https://doi.org/10.1016/j.redox.2018.101082
Article CAS PubMed Google Scholar
Shankar GM, Walsh DM (2009) Alzheimer’s disease: synaptic dysfunction and Abeta. Mol Neurodegener 4:48. https://doi.org/10.1186/1750-1326-4-48
Article CAS PubMed PubMed Central Google Scholar
Venkitaramani DV, Chin J, Netzer WJ, Gouras GK, Lesne S, Malinow R, Lombroso PJ (2007) Beta-amyloid modulation of synaptic transmission and plasticity. J Neurosci 27(44):11832–11837. https://doi.org/10.1523/JNEUROSCI.3478-07.2007
Article CAS PubMed PubMed Central Google Scholar
Van Dam D, Vermeiren Y, Dekker AD, Naude PJ, Deyn PP (2016) Neuropsychiatric disturbances in Alzheimer’s disease: what have we learned from neuropathological studies? Curr Alzheimer Res 13(10):1145–1164. https://doi.org/10.2174/1567205013666160502123607
Article CAS PubMed PubMed Central Google Scholar
Scarmeas N, Brandt J, Albert M, Hadjigeorgiou G, Papadimitriou A, Dubois B, Sarazin M, Devanand D et al (2005) Delusions and hallucinations are associated with worse outcome in Alzheimer disease. Arch Neurol 62(10):1601–1608. https://doi.org/10.1001/archneur.62.10.1601
Article PubMed PubMed Central Google Scholar
Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J (2015) Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathol 130(1):1–19. https://doi.org/10.1007/s00401-015-1449-5
Article CAS PubMed PubMed Central Google Scholar
Preston AR, Eichenbaum H (2013) Interplay of hippocampus and prefrontal cortex in memory. Current Biology 23(17):R764–R773. https://doi.org/10.1016/j.cub.2013.05.041
Article CAS PubMed Google Scholar
Simic G, Babic Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milosevic N, Bazadona D, Buee L et al (2017) Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol 151:101–138. https://doi.org/10.1016/j.pneurobio.2016.04.001
Article CAS PubMed Google Scholar
Edmonds EC, Bangen KJ, Delano-Wood L, Nation DA, Furst AJ, Salmon DP, Bondi MW, Alzheimer’s disease neuroimaging I (2016) patterns of cortical and subcortical amyloid burden across stages of preclinical Alzheimer’s disease. J Int Neuropsychol Soc 22(10):978–990. https://doi.org/10.1017/S1355617716000928
Article PubMed PubMed Central Google Scholar
Soininen H, Laulumaa V, Helkala EL, Hartikainen P, Riekkinen PJ (1992) Extrapyramidal signs in Alzheimer's disease: a 3-year follow-up study. J Neural Transm Park Dis Dement Sect 4(2):107–119. https://doi.org/10.1007/BF02251474
Article CAS PubMed Google Scholar
Tsolaki M, Kokarida K, Iakovidou V, Stilopoulos E, Meimaris J, Kazis A (2001) Extrapyramidal symptoms and signs in Alzheimer’s disease: prevalence and correlation with the first symptom. Am J Alzheimers Dis Other Demen 16(5):268–278. https://doi.org/10.1177/153331750101600512
Article CAS PubMed Google Scholar
Perez SE, Lazarov O, Koprich JB, Chen EY, Rodriguez-Menendez V, Lipton JW, Sisodia SS, Mufson EJ (2005) Nigrostriatal dysfunction in familial Alzheimer’s disease-linked APPswe/PS1DeltaE9 transgenic mice. J Neurosci 25(44):10220–10229. https://doi.org/10.1523/JNEUROSCI.2773-05.2005
Article CAS PubMed PubMed Central Google Scholar
Sala A, Caminiti SP, Presotto L, Pilotto A, Liguori C, Chiaravalloti A, Garibotto V, Frisoni GB et al (2021) In vivo human molecular neuroimaging of dopaminergic vulnerability along the Alzheimer’s disease phases. Alzheimers Res Ther 13(1):187. https://doi.org/10.1186/s13195-021-00925-1
Article CAS PubMed PubMed Central Google Scholar
La Barbera L, Nobili A, Cauzzi E, Paoletti I, Federici M, Saba L, Giacomet C, Marino R et al (2022) Upregulation of Ca(2+)-binding proteins contributes to VTA dopamine neuron survival in the early phases of Alzheimer's disease in Tg2576 mice. Mol Neurodegener 17(1):76. https://doi.org/10.1186/s13024-022-00580-6
Article CAS PubMed PubMed Central Google Scholar
La Barbera L, Vedele F, Nobili A, Krashia P, Spoleti E, Latagliata EC, Cutuli D, Cauzzi E et al (2021) Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer's Disease. Prog Neurobiol 202:102031. https://doi.org/10.1016/j.pneurobio.2021.102031
Article CAS PubMed Google Scholar
Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, Krashia P, Rizzo FR et al (2017) Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun 8:14727. https://doi.org/10.1038/ncomms14727
Article CAS PubMed PubMed Central Google Scholar
Spoleti E, Krashia P, La Barbera L, Nobili A, Lupascu CA, Giacalone E, Keller F, Migliore M et al (2022) Early derailment of firing properties in CA1 pyramidal cells of the ventral hippocampus in an Alzheimer’s disease mouse model. Exp Neurol 350:113969. https://doi.org/10.1016/j.expneurol.2021.113969
Article CAS PubMed Google Scholar
Tian T, Yang Z, Li X (2021) Tissue clearing technique: recent progress and biomedical applications. J Anat 238(2):489–507. https://doi.org/10.1111/joa.13309
Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R, Koblan LW, Comander J et al (2020) Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 4(1):97–110. https://doi.org/10.1038/s41551-019-0501-5
Article CAS PubMed PubMed Central Google Scholar
Slavov N, Budnik BA, Schwab D, Airoldi EM, van Oudenaarden A (2014) Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis. Cell Rep 7(3):705–714.
Comments (0)