C. Badue, R. Guidolini, R.V. Carneiro, P. Azevedo, V.B. Cardoso, A. Forechi, L. Jesus, R. Berriel, T.M. Paixao, F. Mutz, Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2021)
Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, S. Hu, Traffic-sign detection and classification in the wild, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 2110–2118
M.N. Ahangar, Q.Z. Ahmed, F.A. Khan, M. Hafeez, A survey of autonomous vehicles: enabling communication technologies and challenges. Sensors 21(3), 706 (2021)
J. Wang, L. Zhang, Y. Huang, J. Zhao, F. Bella, Safety of autonomous vehicles. J. Adv. Transp. 2020, 1–13 (2020)
J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi, R. Mangharam, Autonomous vehicles on the edge: a survey on autonomous vehicle racing. IEEE Open J. Intell. Transp. Syst. 3, 458–488 (2022)
J. Zhang, W. Wang, C. Lu, J. Wang, A.K. Sangaiah, Lightweight deep network for traffic sign classification. Ann. Telecommun. 75, 369–379 (2020)
A. Aghamohammadi, M. Ang, A. Sundararajan, N.K. Weng, M. Mogharrebi, S.Y. Banihashem, A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos. PLoS ONE 13(2), e0192246 (2018)
Y. Yuan, Z. Xiong, Q. Wang, VSSA-NET: Vertical spatial sequence attention network for traffic sign detection. IEEE Trans. Image Process. 28(7), 3423–3434 (2019)
Article ADS MathSciNet MATH Google Scholar
L. Wang, K. Zhou, A. Chu, G. Wang, L. Wang, An improved light-weight traffic sign recognition algorithm based on YOLOv4-tiny. IEEE Access 9, 124963–124971 (2021)
M. Mogharrebi, A.S. Prabuwono, S. Sahran, A. Aghamohammadi, Missing component detection on PCB using neural networks, in Advances in Electrical Engineering and Electrical Machines (2011), pp. 387–394
H.M. Song, J. Woo, H.K. Kim, In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun. 21, 100198 (2020)
J. Wu, N. Liu, X. Li, Q. Fan, Z. Li, J. Shang, F. Wang, B. Chen, Y. Shen, P. Cao, Convolutional neural network for detecting rib fractures on chest radiographs: a feasibility study. BMC Med. Imaging 23(1), 1–12 (2023)
A. Aghamohammadi, M.C. Ang, E.A. Sundararajan, N.K. Weng, M. Mogharrebi, S.Y. Banihashem, A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos. PLoS ONE 13(2), e0192246 (2018)
Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 6999–7019 (2021)
Article ADS MathSciNet Google Scholar
M. Ang, E. Sundararajan, K. Ng, A. Aghamohammadi, T. Lim, Investigation of threading building blocks framework on real time visual object tracking algorithm. Appl. Mech. Mater. 666, 240–244 (2014)
L. Abdi, A. Meddeb, Deep learning traffic sign detection, recognition and augmentation, in Proceedings of the Symposium on Applied Computing (2017), pp. 131–136
M.C. Ang, A. Aghamohammadi, K.W. Ng, E. Sundararajan, M. Mogharrebi, T.L. Lim, Multi-core frameworks investigation on a real-time object tracking application. J. Theor. Appl. Inf. Technol. 70(1), 1–6 (2014)
S.B. Wali, M.A. Abdullah, M.A. Hannan, A. Hussain, S.A. Samad, P.J. Ker, M.B. Mansor, Vision-based traffic sign detection and recognition systems: current trends and challenges. Sensors 19(9), 2093 (2019)
Y. Tian, J. Gelernter, X. Wang, J. Li, Y. Yu, Traffic sign detection using a multi-scale recurrent attention network. IEEE Trans. Intell. Transp. Syst. 20(12), 4466–4475 (2019)
F. Shao, X. Wang, F. Meng, J. Zhu, D. Wang, J. Dai, Improved faster R-CNN traffic sign detection based on a second region of interest and highly possible regions proposal network. Sensors 19(10), 2288 (2019)
C. Han, G. Gao, Y. Zhang, Real-time small traffic sign detection with revised faster-RCNN. Multimedia Tools Appl. 78, 13263–13278 (2019)
S. Yucong, G. Shuqing, Traffic sign recognition based on HOG feature extraction. J. Meas. Eng. 9, 142–155 (2021)
C. Dewi, R.-C. Chen, X. Jiang, H. Yu, Deep convolutional neural network for enhancing traffic sign recognition developed on Yolo V4. Multimedia Tools Appl. 81(26), 37821–37845 (2022)
J. Yu, X. Ye, Q. Tu, Traffic sign detection and recognition in multiimages using a fusion model with YOLO and VGG network. IEEE Trans. Intell. Transp. Syst. 23(9), 16632–16642 (2022)
Y. Li, J. Li, P. Meng, Attention-YOLOV4: a real-time and high-accurate traffic sign detection algorithm. Multimedia Tools Appl. 82(5), 7567–7582 (2023)
S. Rath, YOLOv8 ultralytics: state-of-the-art YOLO models (2023)
Comments (0)