Impact of generation recombination rate in STO-enabled (FA)2BiCuI6-based double perovskite solar cell without HTL

G. Haidari, Comparative 1D optoelectrical simulation of the perovskite solar cell. AIP Adv. (2019). https://doi.org/10.1063/1.5110495

Article  Google Scholar 

M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

Article  ADS  Google Scholar 

N. Suresh Kumar, K. Chandra Babu Naidu, A review on perovskite solar cells (PSCs), materials and applications. J. Materiomics 7(5), 940–956 (2021). https://doi.org/10.1016/j.jmat.2021.04.002

Article  Google Scholar 

K. Tan, P. Lin, G. Wang, Y. Liu, Z. Xu, Y. Lin, Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid State Electron. 126, 75–80 (2016). https://doi.org/10.1016/j.sse.2016.09.012

Article  ADS  Google Scholar 

Z. Xiao, W. Meng, J. Wang, D.B. Mitzi, Y. Yan, Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4(2), 206–216 (2017). https://doi.org/10.1039/c6mh00519e

Article  Google Scholar 

Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Photonics 9(2), 106–112 (2015). https://doi.org/10.1038/nphoton.2014.284

Article  ADS  Google Scholar 

K. Deepthi Jayan, V. Sebastian, Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy 217, 40–48 (2021). https://doi.org/10.1016/j.solener.2021.01.058

Article  ADS  Google Scholar 

J.S. Manser, J.A. Christians, P.V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116(21), 12956–13008 (2016). https://doi.org/10.1021/acs.chemrev.6b00136

Article  Google Scholar 

W. Chi, S.K. Banerjee, Stability improvement of perovskite solar cells by compositional and interfacial engineering. Chem. Mater. 33(5), 1540–1570 (2021). https://doi.org/10.1021/acs.chemmater.0c04931

Article  Google Scholar 

K.S. Nam et al., Stability improvement of perovskite solar cells by adding Sb-Xanthate to precursor solution. Phys. Status Solidi A Appl. Mater. Sci. (2020). https://doi.org/10.1002/pssa.202000144

Article  Google Scholar 

H. Xu, A brief review on the moisture stability for perovskite solar cells, in IOP Conference Series: Earth and Environmental Science (IOP Publishing Ltd, 2020). https://doi.org/10.1088/1755-1315/585/1/012027.

Y. Wu, X. Li, H. Zeng, Lead-free halide double perovskites: structure, luminescence, and applications. Small Struct. 2(3), 2000071 (2021). https://doi.org/10.1002/sstr.202000071

Article  Google Scholar 

S. Rai, B.K. Pandey, D.K. Dwivedi, Designing hole conductor free tin–lead halide based all-perovskite heterojunction solar cell by numerical simulation. J. Phys. Chem. Solids (2021). https://doi.org/10.1016/j.jpcs.2021.110168

Article  Google Scholar 

M. Kumar, A. Raj, A. Kumar, A. Anshul, Theoretical evidence of high power conversion efficiency in double perovskite solar cell device. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2020.110565

Article  Google Scholar 

S. Rai, B.K. Pandey, A. Garg, D.K. Dwivedi, Hole transporting layer optimization for an efficient lead-free double perovskite solar cell by numerical simulation. Opt. Mater. (2021). https://doi.org/10.1016/J.OPTMAT.2021.111645

Article  Google Scholar 

K.S. Bhardwaj, S. Rai, Sadanand, P. Lohia, D.K. Dwivedi, Investigating the performance of mixed cation mixed halide-based perovskite solar cells using various hole-transport materials by numerical simulation. Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-03262-7

Article  Google Scholar 

P. Srivastava et al., Theoretical study of perovskite solar cell for enhancement of device performance using SCAPS-1D. Phys. Scr. (2022). https://doi.org/10.1088/1402-4896/ac9dc5

Article  Google Scholar 

V. Srivastava, R.K. Chauhan, P. Lohia, Lead free perovskite solar cell using TiO2 as an electron transport materials and Cu2O as a hole transport materials, in Lecture Notes in Electrical Engineering (Springer, 2022), pp. 305–311. https://doi.org/10.1007/978-981-19-2631-0_28

V. Srivastava, R.K. Chauhan, P. Lohia, Highly efficient cesium-based halide perovskite solar cell using SCAPS-1D software: theoretical study. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00946-5

Article  Google Scholar 

M. Pantaler, S. Olthof, K. Meerholz, D.C. Lupascu, Bismuth-Antimony mixed double perovskites Cs2AgBi1−xSbxBr6 in solar cells. MRS Adv. 4(64), 3545–3552 (2019). https://doi.org/10.1557/adv.2019.404

Article  Google Scholar 

S.S. Hussain et al., Numerical modeling and optimization of lead-free hybrid double perovskite solar cell by using SCAPS-1D. J. Renew. Energy 1–12, 2021 (2021). https://doi.org/10.1155/2021/6668687

Article  Google Scholar 

G. Schileo, G. Grancini, Halide perovskites: current issues and new strategies to push material and device stability. J. Phys. Energy (2020). https://doi.org/10.1088/2515-7655/ab6cc4

Article  Google Scholar 

M.R. Jani et al., Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: a numerical study. Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.106652

Article  Google Scholar 

I. Alam, R. Mollick, M.A. Ashraf, Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers. Phys. B Condens. Matter. (2021). https://doi.org/10.1016/j.physb.2021.413187

Article  Google Scholar 

A.K. Chaudhary, S. Verma, R.K. Chauhan, Low-cost lead-free perovskite solar cell with graphene oxide as hole transport layer and carbon as back contact. Optik (2023). https://doi.org/10.1016/J.IJLEO.2023.171469

Article  Google Scholar 

A. Singh et al., Optimization of highly efficient inorganic lead-free double perovskite solar cells via SCAPS-1D. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01440-2

Article  Google Scholar 

A. Sunny, S. Rahman, M.M. Khatun, S.R. Al Ahmed, Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D. AIP Adv. (2021). https://doi.org/10.1063/5.0049646

Article  Google Scholar 

L. Etgar et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134(42), 17396–17399 (2012). https://doi.org/10.1021/JA307789S/ASSET/IMAGES/MEDIUM/JA-2012-07789S_0004.GIF

Article  Google Scholar 

M. Roknuzzaman et al., Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Sci. Rep. (2019). https://doi.org/10.1038/s41598-018-37132-2

Article  Google Scholar 

A.K. Chaudhary, S. Verma, R.K. Chauhan, Design of a low-cost, environment friendly perovskite solar cell with synergic effect of graphene oxide-based HTL and CH3NH3GeI3 as ETL. Eng. Res. Express 5(3), 035039 (2023). https://doi.org/10.1088/2631-8695/acee45

Article  ADS  Google Scholar 

F. Hao, C.C. Stoumpos, Z. Liu, R.P.H. Chang, M.G. Kanatzidis, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 136(46), 16411–16419 (2014). https://doi.org/10.1021/ja509245x

Article  Google Scholar 

H.J. Du, W.C. Wang, J.Z. Zhu, Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chin. Phys. B (2016). https://doi.org/10.1088/1674-1056/25/10/108802

Article  Google Scholar 

S.A. Rutledge, A.S. Helmy, Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4824104

Article  Google Scholar 

N. Singh, A. Agarwal, M. Agarwal, Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell. Sol. Energy 208, 399–410 (2020). https://doi.org/10.1016/j.solener.2020.08.003

Article  ADS  Google Scholar 

E. Widianto, Shobih, E.S. Rosa, K. Triyana, N.M. Nursam, I. Santoso, Performance analysis of carbon-based perovskite solar cells by graphene oxide as hole transport layer: experimental and numerical simulation. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.111584

Article  Google Scholar 

A. Gupta et al., Simulation of carbon-based perovskite solar cell using PBS-TBAI as a hole transport layer (HTL). Sci. Adv. Mater. 15(5), 655–661 (2023). https://doi.org/10.1166/sam.2023.4473

Article  Google Scholar 

A. Gupta et al., Performance enhancement of perovskite solar cell using SrTiO3 as electron transport layer. J. Nanoelectron. Optoelectron. 18(4), 452–458 (2023). https://doi.org/10.1166/jno.2023.3407

Article  MathSciNet  Google Scholar 

K. Kanchan, A. Sahu, S. Yadav, The improved performance with reduction in toxicity in CIGS solar cell using ultra-thin BaSi2BSF layer. J. Nano- and Electron. Phys. (2023). https://doi.org/10.21272/JNEP.15(2).02025

Article  Google Scholar 

V. Srivastava, R.K. Chauhan, P. Lohia, Investigating the performance of lead-free perovskite solar cells using various hole transport material by numerical simulation. Trans. Electr. Electron. Mater. 24(1), 20–30 (2023). https://doi.org/10.1007/s42341-022-00412-w

Article  Google Scholar 

S.R. Meher, L. Balakrishnan, Z.C. Alex, Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: a numerical simulation approach. Superlattices Microstruct. 100, 703–722 (2016). https://doi.org/10.1016/j.spmi.2016.10.028

Article  ADS  Google Scholar 

S. Vallisree, R. Thangavel, T.R. Lenka, Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device. J. Mater. Sci. Mater. Electron. 29(9), 7262–7272 (2018). https://doi.org/10.1007/s10854-018-8715-y

Article  Google Scholar 

Q. Duan et al., Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Sol. Energy 201, 555–560 (2020). https://doi.org/10.1016/j.solener.2020.03.037

Article  ADS  Google Scholar 

V. Srivastava, R.K. Chauhan, P. Lohia, Theoretical study of lead-free perovskite solar cell using ZnSe as ETL and PTAA as HTL. Emerg. Mater. Res. (2022). https://doi.org/10.1680/jemmr.22.00059

Article  Google Scholar 

A.D. Sheikh et al., Effects of high temperature and thermal cycling on the performance of perovskite solar cells: acceleration of charge recombination and deterioration of charge extraction. ACS Appl. Mater. Interfaces 9(40), 35018–35029 (2017). https://doi.org/10.1021/ACSAMI.7B11250/SUPPL_FILE/AM7B11250_SI_001.PDF

Article 

Comments (0)

No login
gif