G. Haidari, Comparative 1D optoelectrical simulation of the perovskite solar cell. AIP Adv. (2019). https://doi.org/10.1063/1.5110495
M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
N. Suresh Kumar, K. Chandra Babu Naidu, A review on perovskite solar cells (PSCs), materials and applications. J. Materiomics 7(5), 940–956 (2021). https://doi.org/10.1016/j.jmat.2021.04.002
K. Tan, P. Lin, G. Wang, Y. Liu, Z. Xu, Y. Lin, Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid State Electron. 126, 75–80 (2016). https://doi.org/10.1016/j.sse.2016.09.012
Z. Xiao, W. Meng, J. Wang, D.B. Mitzi, Y. Yan, Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4(2), 206–216 (2017). https://doi.org/10.1039/c6mh00519e
Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Photonics 9(2), 106–112 (2015). https://doi.org/10.1038/nphoton.2014.284
K. Deepthi Jayan, V. Sebastian, Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy 217, 40–48 (2021). https://doi.org/10.1016/j.solener.2021.01.058
J.S. Manser, J.A. Christians, P.V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116(21), 12956–13008 (2016). https://doi.org/10.1021/acs.chemrev.6b00136
W. Chi, S.K. Banerjee, Stability improvement of perovskite solar cells by compositional and interfacial engineering. Chem. Mater. 33(5), 1540–1570 (2021). https://doi.org/10.1021/acs.chemmater.0c04931
K.S. Nam et al., Stability improvement of perovskite solar cells by adding Sb-Xanthate to precursor solution. Phys. Status Solidi A Appl. Mater. Sci. (2020). https://doi.org/10.1002/pssa.202000144
H. Xu, A brief review on the moisture stability for perovskite solar cells, in IOP Conference Series: Earth and Environmental Science (IOP Publishing Ltd, 2020). https://doi.org/10.1088/1755-1315/585/1/012027.
Y. Wu, X. Li, H. Zeng, Lead-free halide double perovskites: structure, luminescence, and applications. Small Struct. 2(3), 2000071 (2021). https://doi.org/10.1002/sstr.202000071
S. Rai, B.K. Pandey, D.K. Dwivedi, Designing hole conductor free tin–lead halide based all-perovskite heterojunction solar cell by numerical simulation. J. Phys. Chem. Solids (2021). https://doi.org/10.1016/j.jpcs.2021.110168
M. Kumar, A. Raj, A. Kumar, A. Anshul, Theoretical evidence of high power conversion efficiency in double perovskite solar cell device. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2020.110565
S. Rai, B.K. Pandey, A. Garg, D.K. Dwivedi, Hole transporting layer optimization for an efficient lead-free double perovskite solar cell by numerical simulation. Opt. Mater. (2021). https://doi.org/10.1016/J.OPTMAT.2021.111645
K.S. Bhardwaj, S. Rai, Sadanand, P. Lohia, D.K. Dwivedi, Investigating the performance of mixed cation mixed halide-based perovskite solar cells using various hole-transport materials by numerical simulation. Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-03262-7
P. Srivastava et al., Theoretical study of perovskite solar cell for enhancement of device performance using SCAPS-1D. Phys. Scr. (2022). https://doi.org/10.1088/1402-4896/ac9dc5
V. Srivastava, R.K. Chauhan, P. Lohia, Lead free perovskite solar cell using TiO2 as an electron transport materials and Cu2O as a hole transport materials, in Lecture Notes in Electrical Engineering (Springer, 2022), pp. 305–311. https://doi.org/10.1007/978-981-19-2631-0_28
V. Srivastava, R.K. Chauhan, P. Lohia, Highly efficient cesium-based halide perovskite solar cell using SCAPS-1D software: theoretical study. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00946-5
M. Pantaler, S. Olthof, K. Meerholz, D.C. Lupascu, Bismuth-Antimony mixed double perovskites Cs2AgBi1−xSbxBr6 in solar cells. MRS Adv. 4(64), 3545–3552 (2019). https://doi.org/10.1557/adv.2019.404
S.S. Hussain et al., Numerical modeling and optimization of lead-free hybrid double perovskite solar cell by using SCAPS-1D. J. Renew. Energy 1–12, 2021 (2021). https://doi.org/10.1155/2021/6668687
G. Schileo, G. Grancini, Halide perovskites: current issues and new strategies to push material and device stability. J. Phys. Energy (2020). https://doi.org/10.1088/2515-7655/ab6cc4
M.R. Jani et al., Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: a numerical study. Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.106652
I. Alam, R. Mollick, M.A. Ashraf, Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers. Phys. B Condens. Matter. (2021). https://doi.org/10.1016/j.physb.2021.413187
A.K. Chaudhary, S. Verma, R.K. Chauhan, Low-cost lead-free perovskite solar cell with graphene oxide as hole transport layer and carbon as back contact. Optik (2023). https://doi.org/10.1016/J.IJLEO.2023.171469
A. Singh et al., Optimization of highly efficient inorganic lead-free double perovskite solar cells via SCAPS-1D. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01440-2
A. Sunny, S. Rahman, M.M. Khatun, S.R. Al Ahmed, Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D. AIP Adv. (2021). https://doi.org/10.1063/5.0049646
L. Etgar et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134(42), 17396–17399 (2012). https://doi.org/10.1021/JA307789S/ASSET/IMAGES/MEDIUM/JA-2012-07789S_0004.GIF
M. Roknuzzaman et al., Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Sci. Rep. (2019). https://doi.org/10.1038/s41598-018-37132-2
A.K. Chaudhary, S. Verma, R.K. Chauhan, Design of a low-cost, environment friendly perovskite solar cell with synergic effect of graphene oxide-based HTL and CH3NH3GeI3 as ETL. Eng. Res. Express 5(3), 035039 (2023). https://doi.org/10.1088/2631-8695/acee45
F. Hao, C.C. Stoumpos, Z. Liu, R.P.H. Chang, M.G. Kanatzidis, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 136(46), 16411–16419 (2014). https://doi.org/10.1021/ja509245x
H.J. Du, W.C. Wang, J.Z. Zhu, Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chin. Phys. B (2016). https://doi.org/10.1088/1674-1056/25/10/108802
S.A. Rutledge, A.S. Helmy, Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4824104
N. Singh, A. Agarwal, M. Agarwal, Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell. Sol. Energy 208, 399–410 (2020). https://doi.org/10.1016/j.solener.2020.08.003
E. Widianto, Shobih, E.S. Rosa, K. Triyana, N.M. Nursam, I. Santoso, Performance analysis of carbon-based perovskite solar cells by graphene oxide as hole transport layer: experimental and numerical simulation. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.111584
A. Gupta et al., Simulation of carbon-based perovskite solar cell using PBS-TBAI as a hole transport layer (HTL). Sci. Adv. Mater. 15(5), 655–661 (2023). https://doi.org/10.1166/sam.2023.4473
A. Gupta et al., Performance enhancement of perovskite solar cell using SrTiO3 as electron transport layer. J. Nanoelectron. Optoelectron. 18(4), 452–458 (2023). https://doi.org/10.1166/jno.2023.3407
Article MathSciNet Google Scholar
K. Kanchan, A. Sahu, S. Yadav, The improved performance with reduction in toxicity in CIGS solar cell using ultra-thin BaSi2BSF layer. J. Nano- and Electron. Phys. (2023). https://doi.org/10.21272/JNEP.15(2).02025
V. Srivastava, R.K. Chauhan, P. Lohia, Investigating the performance of lead-free perovskite solar cells using various hole transport material by numerical simulation. Trans. Electr. Electron. Mater. 24(1), 20–30 (2023). https://doi.org/10.1007/s42341-022-00412-w
S.R. Meher, L. Balakrishnan, Z.C. Alex, Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: a numerical simulation approach. Superlattices Microstruct. 100, 703–722 (2016). https://doi.org/10.1016/j.spmi.2016.10.028
S. Vallisree, R. Thangavel, T.R. Lenka, Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device. J. Mater. Sci. Mater. Electron. 29(9), 7262–7272 (2018). https://doi.org/10.1007/s10854-018-8715-y
Q. Duan et al., Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Sol. Energy 201, 555–560 (2020). https://doi.org/10.1016/j.solener.2020.03.037
V. Srivastava, R.K. Chauhan, P. Lohia, Theoretical study of lead-free perovskite solar cell using ZnSe as ETL and PTAA as HTL. Emerg. Mater. Res. (2022). https://doi.org/10.1680/jemmr.22.00059
A.D. Sheikh et al., Effects of high temperature and thermal cycling on the performance of perovskite solar cells: acceleration of charge recombination and deterioration of charge extraction. ACS Appl. Mater. Interfaces 9(40), 35018–35029 (2017). https://doi.org/10.1021/ACSAMI.7B11250/SUPPL_FILE/AM7B11250_SI_001.PDF
Comments (0)