E.J. Nordberg, M.J. Caley, L. Schwarzkopf, Designing solar farms for synergistic commercial and conservation outcomes. Sol Energy. 228, 586–593 (2021). https://doi.org/10.1016/j.solener.2021.09.090
Y. Ghiassi-Farrokhfal, F. Kazhamiaka, C. Rosenberg, S. Keshav, Optimal design of solar PV farms with storage. IEEE Trans. Sustain. Energy. 6(4), 1586–1593 (2015). https://doi.org/10.1109/TSTE.2015.2456752
M. Chandola, S. Tiwari, R. Patil, The grid connected roof top solar project in army Institute of technology; a case study. J. Eng. Educ. Transform. 69–77, (2021)
R. Chandel, S.S. Chandel, P. Malik, Perspective of new distributed grid connected roof top solar photovoltaic power generation policy interventions in India. Energy Policy. 168, 113122 (2022). https://doi.org/10.1016/j.enpol.2022.113122
M.R. Khan, I. Alam, M.R. Khan, Inverter-Less integration of Roof-Top solar PV with grid connected industrial drives. Energies. 16(4), 2060 (2023). https://doi.org/10.3390/en16042060
A.K. Shukla, K. Sudhakar, P. Baredar, Design, simulation and economic analysis of standalone roof top solar PV system in India. Sol Energy. 136, 437–449 (2016). https://doi.org/10.1016/j.solener.2016.07.009
A. Mohanty, P.K. Ray, M. Viswavandya, S. Mohanty, P.P. Mohanty, Experimental analysis of a standalone solar photo voltaic cell for improved power quality. Optik. 171, 876–885 (2018). https://doi.org/10.1016/j.ijleo.2018.06.139
G. Callebaut, G. Leenders, Van J. Mulders, G. Ottoy, De L. Strycker, Van der L. Perre, The Art of designing remote IoT Devices—Technologies and strategies for a long battery life. Sensors. 21(3), 913 (2021). https://doi.org/10.3390/s21030913
H. Jayakumar, K. Lee, W.S. Lee, A. Raha, Y. Kim, V. Raghunathan, Powering the internet of things. In: Proceedings of the 2014 international symposium on Low power electronics and design. ISLPED; 375–380, (2014) https://doi.org/10.1145/2627369.2631644
J. Henkel, S. Pagani, H. Amrouch, L. Bauer, F. Samie, Ultra-low power and dependability for IoT devices (Invited paper for IoT technologies). In: Design, Automation & Test in Europe Conference & Exhibition, 954–959, (2017) https://doi.org/10.23919/DATE.2017.7927129
W. Mrozik, M.A. Rajaeifar, O. Heidrich, P. Christensen, Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 14, 6099–6121 (2021)
Q. Wang, W. Liu, X. Yuan, H. Tang, Y. Tang, M. Wang, J. Zuo, Z. Song, J. Sun, Environmental impact analysis and process optimization of batteries based on life cycle assessment. J. Clean. Prod. 174, 1262–1273 (2018)
A. Allouhi, S. Rehman, M.S. Buker, Z. Said, Up-to-date literature review on solar PV systems: technology progress, market status and R&D. J. Clean. Prod. 362, 132339 (2022). https://doi.org/10.1016/j.jclepro.2022.132339
S.W. Yufenyuy, G.M. Mengata, L.N. Nneme, Influence of the nature of lamp on model parameters of PV modules operating in an indoor environment. Energy Rep. 10, 4374–4388 (2023). https://doi.org/10.1016/j.egyr.2023.10.072
B. Minnaert, P. Veelaert, A proposal for typical artificial light sources for the characterization of indoor photovoltaic applications. Energies. 7(3), 1500–1516 (2014). https://doi.org/10.3390/en7031500
J.H. Kim, K.J. Moon, J.M. Kim, D. Lee, S.H. Kim, Effects of various light-intensity and temperature environments on the photovoltaic performance of dye-sensitized solar cells. Sol Energy. 113, 251–257 (2015). https://doi.org/10.1016/j.solener.2015.01.012
F. Khan, S.H. Baek, J.H. Kim, Intensity dependency of photovoltaic cell parameters under high illumination conditions: an analysis. Appl. Energy. 133, 356–362 (2014). https://doi.org/10.1016/j.apenergy.2014.07.107
F. Mateen, M.A. Saeed, J.W. Shim, S.K. Hong, Indoor/outdoor light-harvesting by coupling low-cost organic solar cell with a luminescent solar concentrator. Sol Energy. 207, 379–387 (2020). https://doi.org/10.1016/j.solener.2020.06.104
Y.H. Sim, M.J. Yun, L. Fauzan, H. Choi, D.Y. Lee, S.I. Cha, Electric power from shadows and indoors: solar cells under diffuse light conditions. Sustain. Energy Fuels. 8, 700–716 (2024). https://doi.org/10.1039/D3SE00836C
N. Razali, S. Yusoff, N. Tumeran, M. Yunus, Indoor light energy harvesting technique to energize a heat sensor using polycrystalline solar panel. Bull. Electr. Eng. Inf. 12, 3238–3246 (2023). https://doi.org/10.11591/eei.v12i6.5357
H.K.H. Lee, J. Wu, J. Barbé, S.M. Jain, S. Wood, E.M. Speller, Z. Li, F.A. Castro, J.R. Durrant, W.C. Tsoi, Organic photovoltaic cells– promising indoor light harvesters for self-sustainable electronics. J. Mater. Chem. A 6(14), 5618–5626 (2018)
De F. Rossi, T. Pontecorvo, T.M. Brown, Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl. Energy. 156, 413–422 (2015). https://doi.org/10.1016/j.apenergy.2015.07.031
U. Mahajan, K. Prajapat, M. Dhonde, K. Sahu, P.M. Shirage, Natural dyes for dye-sensitized solar cells (DSSCs): an overview of extraction, characterization and performance. Nano Struct. Nano Objects. 37, 101111 (2024). https://doi.org/10.1016/j.nanoso.2024.101111
K. Prajapat, M. Dhonde, K. Sahu, P. Bhojane, V.V.S. Murty, P.M. Shirage, The evolution of organic materials for efficient dye-sensitized solar cells. J. Photochem. Photobiol C Photochem. Rev. 55, 100586 (2023). https://doi.org/10.1016/j.jphotochemrev.2023.100586
A.M. Bagher, V.M. Abadi, M. Mirhabibi, Types of solar cells and application. Am. J. Opt. Photonics. 3(5), 94–113 (2015). https://doi.org/10.11648/j.ajop.20150305.17
Y. Li, N.J. Grabham, S.P. Beeby, M.J. Tudor, The effect of the type of illumination on the energy harvesting performance of solar cells. Sol Energy. 111, 21–29 (2015)
G.M. Mengata, S.N. Perabi, F.E. Ndi, S.W. Yufenyuy, Characterization of solar photovoltaic modules powered by artificial light for use as a source for smart sensors. Energy Rep. 8, 12105–12116 (2022)
Y.H. Sim, M.J. Yun, L. Fauzan, H. Choi, D.Y. Lee, S.I. Cha, Electric power from shadows and indoors: solar cells under diffuse light conditions. Sustain. Energy Fuels. 8(4), 700–716 (2024)
A. Chakraborty, G. Lucarelli, J. Xu, Z. Skafi, S. Castro-Hermosa, A.B. Kaveramma, R.G. Balakrishna, T.M. Brown, Photovoltaics for indoor energy harvesting. Nano Energy. 109932, (2024)
N. Kumari, S.K. Singh, S. Kumar, V.K. Jadoun, Performance analysis of partially shaded high-efficiency mono PERC/mono crystalline PV module under indoor and environmental conditions. Sci. Rep. 14(1), 21587 (2024)
E. Ferre, M. Gasulla, F. Reverter, Comparative analysis of low-power PV cells of different technologies under different types of indoor artificial lighting. 2024 IEEE Int Instrum Meas Technol Conf (I2MTC). IEEE; 1–5, (2024)
M.Q. Khokhar, H. Yousuf, M. Alamgeer, Chu, R.U. Rahman, J.A. Jony, S.Q. Hussain, D.P. Pham, J. Yi, Systematic modeling and optimization for High-Efficiency interdigitated Back‐Contact crystalline silicon solar cells. Energy Technol. 12(10), 2400831 (2024)
V.T. Rangel-Kuoppa, Refinement of the Co-Content function, through an integration of a polynomial fit of I-Isc. Part 2 application to experimental current–voltage curves. Discov Electron. 2(1), 2 (2025)
W. Wang, K. Xu, C. Xiang, Study on the application of a dynamic photovoltaic integrated light shelf for office buildings. Energy. 314, 134205 (2025)
Comments (0)