Structural, optical and photoluminescence properties of doped ZnAO (A = Mn, Fe & Co; x = 0.05) nanoparticles

M. Shatnawi, A.M. Alsmadi, I. Bsoul, B. Salameh, G.A. Alnawashi, F. Al-Dweri, F. El, Akkad, Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J. Alloys Compd. 655, 244–252 (2016). https://doi.org/10.1016/j.jallcom.2015.09.166

Article  Google Scholar 

T.A. Para, V. Shelke, Extreme blue-shifted photoluminescence from quantum confinement of core-shell ZnO. J. Mater. Sci: Mater. Electron. 28, 18842–18848 (2017). https://doi.org/10.1007/s10854-017-7835-0

Article  Google Scholar 

T.A. Para, H.A. Reshi, S. Pillai, V. Shelke, Grain size disposed of structural, optical and polarization tuning in ZnO. Appl. Phys. A 122, 730 (2016). https://doi.org/10.1007/s00339-016-0256-8

Article  ADS  Google Scholar 

J. Kaewsaenee, M.T. Singhaset, K. Roongraung, P. Kemacheevakul, S. Chuangchote, Polymer-Assisted Co-precipitation synthesized zinc oxide nanoparticles and their uses for green chemical synthesis via photocatalytic glucose conversions. ACS Omega. 8, 43664–43673 (2023). https://doi.org/10.1021/acsomega.3c05183

Article  Google Scholar 

R. Kant, V. Ahuja, K. Joshi, H. Gupta, S. Bhardwaj, Tuning the dielectric characteristics and energy storage properties of Ni-ZnO/rGO nanocomposite. Vacuum. 204, 111375 (2022). https://doi.org/10.1016/j.vacuum.2022.111375

Article  ADS  Google Scholar 

A.T. Ravichandran, R. Karthick, Enhanced photoluminescence, structural, morphological and antimicrobial efficacy of Co-doped ZnO nanoparticles prepared by Co-precipitation method. Results Mater. 5, 100072 (2000). https://doi.org/10.1016/j.rinma.2020.100072

Article  Google Scholar 

G.P. Singh, A.K. Aman, R.K. Singh, M.K. Roy, Effect of low Co-doping on the structural, optical, and magnetic performance of ZnO nanoparticles. Optik. 203, 163966 (2020). https://doi.org/10.1016/j.ijleo.2019.163966

Article  Google Scholar 

N.H. Alonizan, Photoluminescence properties of Al-doped ZnO synthesized via a facile sol-gel route. J. Alloys Compd. 912, 165084 (2022). https://doi.org/10.1016/j.jallcom.2022.165084

Article  Google Scholar 

S. Mrabet, N. Ihzaz, M.N. Bessadok et al., Microstructural, Raman, and magnetic investigations on Ca-doped ZnO nanoparticles. J. Inorg. Organomet. Polym. (2023). https://doi.org/10.1007/s10904-023-02947-8

Article  Google Scholar 

S. Kuriakose, B. Satpatib, S. Mohapatra, Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys. Chem. Chem. Phys. 17, 25172 (2015), https://doi.org/10.1039/c5cp01681a

D. Li, J.F. Huang, L.Y. Cao, L. Jia-Yin, H.B. Ou Yang, C.Y. Yao, Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties. Ceram. Int. 40(2), 2647–2653 (2014). https://doi.org/10.1016/j.ceramint.2013.10.061

Article  Google Scholar 

K. Ravichandran, N. Chidambaram, T. Arun, S. Velmathi, S. Gopalakrishnan, Realizing cost-effective ZnO: Sr nanoparticles@graphene nano spreads for improved photocatalytic and antibacterial activities. RSC Adv. 6, 67575–67585 (2016). https://doi.org/10.1039/C6RA08697G

Article  ADS  Google Scholar 

P. Singh, R. Kumar, R.K. Singh, Progress on transition metal-doped ZnO nanoparticles and its application. Ind. Eng. Chem. Res. 58(37), 17130–17163 (2019). https://doi.org/10.1021/acs.iecr.9b01561

Article  Google Scholar 

A. Derri, M. Guezzoul, A. Mokadem, A. Ouerdane, K.B. Bensassi, M. Bouslama, B. Kharoubi, E. Hameurlaine, Insight into the photoluminescence and morphological characteristics of transition metals (TM = Mn, Ni, Co, Cu)-doped ZnO semiconductor: a comparative study. Opt. Mater. 145, 114467 (2023), https://doi.org/10.1016/j.optmat.2023.114467

M.M. Zeidan, S. Abedrabbo, Enhancing photoluminescence spectra for doped ZnO using neutron irradiation. ACS Omega. 8, 16722–16728 (2023). https://doi.org/10.1021/acsomega.3c00218

Article  Google Scholar 

A. Irshad, A. Ejaz, M. Ahmad, M.S. Akhtar, M.A. Basharat, W.Q. Khan, M.I. Ghauri, A. Ali, M.F. Manzoor, The investigation of hydrogen evolution using Ca doped ZnO catalysts under visible light illumination. J. Mater. Sci. Semicond. Process. 105, 104748 (2020). https://doi.org/10.1016/j.mssp.2019.104748

Article  Google Scholar 

R. Slama, J.E. Ghoul, K. Omri, A. Houas, L.E. Mir, F. Launay, Effect of Ca-doping on microstructure and photocatalytic activity of ZnO nanoparticles synthesized by Sol gel method. J. Mater. Sci. Mater. Electron. 27, 7939–7946 (2016). https://doi.org/10.1007/s10854-016-4786-9

Article  Google Scholar 

R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. J. Mater. Sci. Semicond. Process. 32, 152–159 (2015). https://doi.org/10.1016/j.mssp.2015.01.013

Article  Google Scholar 

P. Visali, R. Bhuvaneswari, Photoluminescence and enhanced photocatalytic activity of ZnO nanoparticles through the incorporation of metal dopants al and Ca. Optik 202, 163706 (2020), https://doi.org/10.1016/j.ijleo.2019.163706

R. Karthick, P. Sakthivel, C. Selvaraju, M.S. Paulraj, Tuning of photoluminescence and antibacterial properties of ZnO nanoparticles through Sr doping for biomedical applications. J. Nanomater. 8352204 (2021). https://doi.org/10.1155/2021/8352204

M. Yarahmadi, H. Maleki-Ghaleh, M.E. Mehr, Z. Dargahi, F. Rasouli, M.H. Siadati, Synthesis and characterization of Sr-doped ZnO nanoparticles for photocatalytic applications. J. Alloys Compd. 853, 157000 (2021). https://doi.org/10.1016/j.jallcom.2020.157000

Article  Google Scholar 

R. Zamiri, H.M. Chenari, H.F. Moafi, M. Shabani, S.A. Salehizadeh, A. Rebelo, J.S. Kumar, M.P.F. Graça, M.J. Soares, J.M.F. Ferreira, Ba-doped ZnO nanostructure: X-ray line analysis and optical properties in visible and low frequency infrared. Ceram. Int. 42(11), 12860–12867 (2016). https://doi.org/10.1016/j.ceramint.2016.05.051

Article  Google Scholar 

K. Punia, G. Lal, P.A. Alvi, S.N. Dolia, S. Dalela, K.B. Modi, S. Kumar, A comparative study on the influence of monovalent, divalent and trivalent doping on the structural, optical and photoluminescence properties of Zn0.96T0.04O (T: Li+, Ca2+ & Gd3+) nanoparticles. Ceram. Int. 45(10), 13472–13483 (2019). https://doi.org/10.1016/j.ceramint.2019.04.048

Article  Google Scholar 

K. Dubey, S. Dubey, V. Sahu, R.A. Parry, A. Modi, N.K. Gaur, Structural, optical and magnetic properties of CoFe2O4 nanoparticle synthesized by ultrasonication assisted sol-gel technique. Appl. Phys. 128, 560 (2022). https://doi.org/10.1007/s00339-022-05681-z

Article  Google Scholar 

R. Yadav, A. Modi, K. Dubey, M.M. Malik, Optical and photoluminescence response driven by sintering temperature in LaFeO3 nanoperovskite. J. Mater. Sci: Mater. Electron. 34, 1243 (2023). https://doi.org/10.1007/s10854-023-10630-4

Article  Google Scholar 

N. Srinatha, K.G.M. Nair, B. Angadi, Microstructure, electronic structure and optical properties of combustion synthesized Co doped ZnO nanoparticles. Phys. B Condens. Matter. 474, 97–104 (2015). https://doi.org/10.1016/j.physb.2015.06.009

Article  ADS  Google Scholar 

R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

Article  ADS  Google Scholar 

K. Dubey, S. Dubey, A. Modi, R.K. Sharma, S. Chakravarty, C. Parvathiraja, N.K. Gaur, Purple-blue luminescence and magnetic properties of visible-light active novel BiMn2O5 photocatalyst by ultrasonication assisted sol-gel method. Appl. Phys. 129, 715 (2023), https://doi.org/10.1007/s00339-023-06971-w

S. Dubey, K. Dubey, V. Sahu, A. Modi, G. Pagare, F.Z. Haque, N.K. Gaur, Exploring structural, vibrational, optical and photoluminescence characteristic of tetragonal-tungsten bronze Ba4Bi2Fe2Nb8O30 compound. J. Mater. Sci: Mater. Electron. 34, 2312 (2023), https://doi.org/10.1007/s10854-023-11769-w

K. Dubey, S. Dubey, V. Sahu, A. Modi, J. Bamne, F.Z. Haque, N.K. Gaur, Defects and oxygen vacancies modified properties of transition metal doped Ce0.95X0.05O2 (X = Fe, Co, Ni) nanoparticles. Mater. Sci. Eng. B 288, 116154 (2023). https://doi.org/10.1016/j.mseb.2022.116154

Article  Google Scholar 

A.A. AlObaid, G. Nazir, A. Modi, S. Thakur, J.H. Malik, Hydrazine hydrate free one pot rapid hydrothermal synthesis of crystalline Zn1-xNdxSe nanostructures for wastewater treatment. Inorg. Chem. Commun. 161, 112060 (2024). https://doi.org/10.1016/j.inoche.2024.112060

Article  Google Scholar 

S. Azizi, R. Mohamad, M.M. Shahri, Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with citrullus colocynthis (L.) Schrad: characterization and biomedical applications. Molecules. 22, 301 (2017). https://doi.org/10.3390/molecules22020301

Article  Google Scholar 

M.A. Moiz, A. Mumtaz, M. Salman, S.W. Husain, A.H. Baluch, M. Ramzan, Band-gap engineering of ZnO via transition metal doping: an Ab initio study. Chem. Phys. Lett. 781, 138979 (2021). https://doi.org/10.1016/j.cplett.2021.138979

Article  Google Scholar 

M. Chakraborty, A. Ghosh, R. Thangavel, Experimental and theoretical investigations of structural and optical properties of copper doped ZnO nanorods. J. Sol-Gel Sci. Technol. 74, 756–764 (2015). https://doi.org/10.1007/s10971-015-3660-1

Article  Google Scholar 

S.V. Bhat, F.L. Deepak, Tuning the band-gap of ZnO by substitution with Mn2+, Co2+ and Ni2+. Solid State Commun. 135, 345–347 (2005). https://doi.org/10.1016/j.ssc.2005.05.051

Article  ADS  Google Scholar 

P.S. Vindhya, S. Suresh, R. Kunjikannan, V.T. Kavitha, Antimicrobial, antioxidant, cytotoxicity and photocatalytic performance of Co-doped ZnO nanoparticles biosynthesized using Annona Muricata leaf extract. J. Environ. Health Sci. 21, 167–185 (2023). https://doi.org/10.1007/s40201-023-00851-4

Article  Google Scholar 

M.R. Parra, P. Pandey, H. Siddiqui, V. Sudhakar, K. Krishnamoorthy, F.Z. Haque, Evolution of ZnO nanostructures as a hexagonal disk: implementation as photoanode material and efficiency enhancement in al: ZnO based dye-sensitized solar cells. Appl. Surf. Sci. 470, 1130–1138 (2019). https://doi.org/10.1016/j.apsusc.2018.11.077

Article  ADS  Google Scholar 

A.K. Keshari, P. Gupta, M. Singh, ZnO nanoparticles doping with transition metal elements in polymeric and bio macromolecular matrix and their optical evolution. Opt. Mater. 111, 110697 (2021). https://doi.org/10.1016/j.optmat.2020.110697

Article  Google Scholar 

B. Maibam, S. Baruah, S. Kumar, Photoluminescence and intrinsic ferromagnetism of Fe doped zinc oxide. SN Appl. Sci. 2, 1712 (2020). https://doi.org/10.1007/s42452-020-03519-y

Article 

Comments (0)

No login
gif