M. Shatnawi, A.M. Alsmadi, I. Bsoul, B. Salameh, G.A. Alnawashi, F. Al-Dweri, F. El, Akkad, Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J. Alloys Compd. 655, 244–252 (2016). https://doi.org/10.1016/j.jallcom.2015.09.166
T.A. Para, V. Shelke, Extreme blue-shifted photoluminescence from quantum confinement of core-shell ZnO. J. Mater. Sci: Mater. Electron. 28, 18842–18848 (2017). https://doi.org/10.1007/s10854-017-7835-0
T.A. Para, H.A. Reshi, S. Pillai, V. Shelke, Grain size disposed of structural, optical and polarization tuning in ZnO. Appl. Phys. A 122, 730 (2016). https://doi.org/10.1007/s00339-016-0256-8
J. Kaewsaenee, M.T. Singhaset, K. Roongraung, P. Kemacheevakul, S. Chuangchote, Polymer-Assisted Co-precipitation synthesized zinc oxide nanoparticles and their uses for green chemical synthesis via photocatalytic glucose conversions. ACS Omega. 8, 43664–43673 (2023). https://doi.org/10.1021/acsomega.3c05183
R. Kant, V. Ahuja, K. Joshi, H. Gupta, S. Bhardwaj, Tuning the dielectric characteristics and energy storage properties of Ni-ZnO/rGO nanocomposite. Vacuum. 204, 111375 (2022). https://doi.org/10.1016/j.vacuum.2022.111375
A.T. Ravichandran, R. Karthick, Enhanced photoluminescence, structural, morphological and antimicrobial efficacy of Co-doped ZnO nanoparticles prepared by Co-precipitation method. Results Mater. 5, 100072 (2000). https://doi.org/10.1016/j.rinma.2020.100072
G.P. Singh, A.K. Aman, R.K. Singh, M.K. Roy, Effect of low Co-doping on the structural, optical, and magnetic performance of ZnO nanoparticles. Optik. 203, 163966 (2020). https://doi.org/10.1016/j.ijleo.2019.163966
N.H. Alonizan, Photoluminescence properties of Al-doped ZnO synthesized via a facile sol-gel route. J. Alloys Compd. 912, 165084 (2022). https://doi.org/10.1016/j.jallcom.2022.165084
S. Mrabet, N. Ihzaz, M.N. Bessadok et al., Microstructural, Raman, and magnetic investigations on Ca-doped ZnO nanoparticles. J. Inorg. Organomet. Polym. (2023). https://doi.org/10.1007/s10904-023-02947-8
S. Kuriakose, B. Satpatib, S. Mohapatra, Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys. Chem. Chem. Phys. 17, 25172 (2015), https://doi.org/10.1039/c5cp01681a
D. Li, J.F. Huang, L.Y. Cao, L. Jia-Yin, H.B. Ou Yang, C.Y. Yao, Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties. Ceram. Int. 40(2), 2647–2653 (2014). https://doi.org/10.1016/j.ceramint.2013.10.061
K. Ravichandran, N. Chidambaram, T. Arun, S. Velmathi, S. Gopalakrishnan, Realizing cost-effective ZnO: Sr nanoparticles@graphene nano spreads for improved photocatalytic and antibacterial activities. RSC Adv. 6, 67575–67585 (2016). https://doi.org/10.1039/C6RA08697G
P. Singh, R. Kumar, R.K. Singh, Progress on transition metal-doped ZnO nanoparticles and its application. Ind. Eng. Chem. Res. 58(37), 17130–17163 (2019). https://doi.org/10.1021/acs.iecr.9b01561
A. Derri, M. Guezzoul, A. Mokadem, A. Ouerdane, K.B. Bensassi, M. Bouslama, B. Kharoubi, E. Hameurlaine, Insight into the photoluminescence and morphological characteristics of transition metals (TM = Mn, Ni, Co, Cu)-doped ZnO semiconductor: a comparative study. Opt. Mater. 145, 114467 (2023), https://doi.org/10.1016/j.optmat.2023.114467
M.M. Zeidan, S. Abedrabbo, Enhancing photoluminescence spectra for doped ZnO using neutron irradiation. ACS Omega. 8, 16722–16728 (2023). https://doi.org/10.1021/acsomega.3c00218
A. Irshad, A. Ejaz, M. Ahmad, M.S. Akhtar, M.A. Basharat, W.Q. Khan, M.I. Ghauri, A. Ali, M.F. Manzoor, The investigation of hydrogen evolution using Ca doped ZnO catalysts under visible light illumination. J. Mater. Sci. Semicond. Process. 105, 104748 (2020). https://doi.org/10.1016/j.mssp.2019.104748
R. Slama, J.E. Ghoul, K. Omri, A. Houas, L.E. Mir, F. Launay, Effect of Ca-doping on microstructure and photocatalytic activity of ZnO nanoparticles synthesized by Sol gel method. J. Mater. Sci. Mater. Electron. 27, 7939–7946 (2016). https://doi.org/10.1007/s10854-016-4786-9
R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. J. Mater. Sci. Semicond. Process. 32, 152–159 (2015). https://doi.org/10.1016/j.mssp.2015.01.013
P. Visali, R. Bhuvaneswari, Photoluminescence and enhanced photocatalytic activity of ZnO nanoparticles through the incorporation of metal dopants al and Ca. Optik 202, 163706 (2020), https://doi.org/10.1016/j.ijleo.2019.163706
R. Karthick, P. Sakthivel, C. Selvaraju, M.S. Paulraj, Tuning of photoluminescence and antibacterial properties of ZnO nanoparticles through Sr doping for biomedical applications. J. Nanomater. 8352204 (2021). https://doi.org/10.1155/2021/8352204
M. Yarahmadi, H. Maleki-Ghaleh, M.E. Mehr, Z. Dargahi, F. Rasouli, M.H. Siadati, Synthesis and characterization of Sr-doped ZnO nanoparticles for photocatalytic applications. J. Alloys Compd. 853, 157000 (2021). https://doi.org/10.1016/j.jallcom.2020.157000
R. Zamiri, H.M. Chenari, H.F. Moafi, M. Shabani, S.A. Salehizadeh, A. Rebelo, J.S. Kumar, M.P.F. Graça, M.J. Soares, J.M.F. Ferreira, Ba-doped ZnO nanostructure: X-ray line analysis and optical properties in visible and low frequency infrared. Ceram. Int. 42(11), 12860–12867 (2016). https://doi.org/10.1016/j.ceramint.2016.05.051
K. Punia, G. Lal, P.A. Alvi, S.N. Dolia, S. Dalela, K.B. Modi, S. Kumar, A comparative study on the influence of monovalent, divalent and trivalent doping on the structural, optical and photoluminescence properties of Zn0.96T0.04O (T: Li+, Ca2+ & Gd3+) nanoparticles. Ceram. Int. 45(10), 13472–13483 (2019). https://doi.org/10.1016/j.ceramint.2019.04.048
K. Dubey, S. Dubey, V. Sahu, R.A. Parry, A. Modi, N.K. Gaur, Structural, optical and magnetic properties of CoFe2O4 nanoparticle synthesized by ultrasonication assisted sol-gel technique. Appl. Phys. 128, 560 (2022). https://doi.org/10.1007/s00339-022-05681-z
R. Yadav, A. Modi, K. Dubey, M.M. Malik, Optical and photoluminescence response driven by sintering temperature in LaFeO3 nanoperovskite. J. Mater. Sci: Mater. Electron. 34, 1243 (2023). https://doi.org/10.1007/s10854-023-10630-4
N. Srinatha, K.G.M. Nair, B. Angadi, Microstructure, electronic structure and optical properties of combustion synthesized Co doped ZnO nanoparticles. Phys. B Condens. Matter. 474, 97–104 (2015). https://doi.org/10.1016/j.physb.2015.06.009
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551
K. Dubey, S. Dubey, A. Modi, R.K. Sharma, S. Chakravarty, C. Parvathiraja, N.K. Gaur, Purple-blue luminescence and magnetic properties of visible-light active novel BiMn2O5 photocatalyst by ultrasonication assisted sol-gel method. Appl. Phys. 129, 715 (2023), https://doi.org/10.1007/s00339-023-06971-w
S. Dubey, K. Dubey, V. Sahu, A. Modi, G. Pagare, F.Z. Haque, N.K. Gaur, Exploring structural, vibrational, optical and photoluminescence characteristic of tetragonal-tungsten bronze Ba4Bi2Fe2Nb8O30 compound. J. Mater. Sci: Mater. Electron. 34, 2312 (2023), https://doi.org/10.1007/s10854-023-11769-w
K. Dubey, S. Dubey, V. Sahu, A. Modi, J. Bamne, F.Z. Haque, N.K. Gaur, Defects and oxygen vacancies modified properties of transition metal doped Ce0.95X0.05O2 (X = Fe, Co, Ni) nanoparticles. Mater. Sci. Eng. B 288, 116154 (2023). https://doi.org/10.1016/j.mseb.2022.116154
A.A. AlObaid, G. Nazir, A. Modi, S. Thakur, J.H. Malik, Hydrazine hydrate free one pot rapid hydrothermal synthesis of crystalline Zn1-xNdxSe nanostructures for wastewater treatment. Inorg. Chem. Commun. 161, 112060 (2024). https://doi.org/10.1016/j.inoche.2024.112060
S. Azizi, R. Mohamad, M.M. Shahri, Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with citrullus colocynthis (L.) Schrad: characterization and biomedical applications. Molecules. 22, 301 (2017). https://doi.org/10.3390/molecules22020301
M.A. Moiz, A. Mumtaz, M. Salman, S.W. Husain, A.H. Baluch, M. Ramzan, Band-gap engineering of ZnO via transition metal doping: an Ab initio study. Chem. Phys. Lett. 781, 138979 (2021). https://doi.org/10.1016/j.cplett.2021.138979
M. Chakraborty, A. Ghosh, R. Thangavel, Experimental and theoretical investigations of structural and optical properties of copper doped ZnO nanorods. J. Sol-Gel Sci. Technol. 74, 756–764 (2015). https://doi.org/10.1007/s10971-015-3660-1
S.V. Bhat, F.L. Deepak, Tuning the band-gap of ZnO by substitution with Mn2+, Co2+ and Ni2+. Solid State Commun. 135, 345–347 (2005). https://doi.org/10.1016/j.ssc.2005.05.051
P.S. Vindhya, S. Suresh, R. Kunjikannan, V.T. Kavitha, Antimicrobial, antioxidant, cytotoxicity and photocatalytic performance of Co-doped ZnO nanoparticles biosynthesized using Annona Muricata leaf extract. J. Environ. Health Sci. 21, 167–185 (2023). https://doi.org/10.1007/s40201-023-00851-4
M.R. Parra, P. Pandey, H. Siddiqui, V. Sudhakar, K. Krishnamoorthy, F.Z. Haque, Evolution of ZnO nanostructures as a hexagonal disk: implementation as photoanode material and efficiency enhancement in al: ZnO based dye-sensitized solar cells. Appl. Surf. Sci. 470, 1130–1138 (2019). https://doi.org/10.1016/j.apsusc.2018.11.077
A.K. Keshari, P. Gupta, M. Singh, ZnO nanoparticles doping with transition metal elements in polymeric and bio macromolecular matrix and their optical evolution. Opt. Mater. 111, 110697 (2021). https://doi.org/10.1016/j.optmat.2020.110697
B. Maibam, S. Baruah, S. Kumar, Photoluminescence and intrinsic ferromagnetism of Fe doped zinc oxide. SN Appl. Sci. 2, 1712 (2020). https://doi.org/10.1007/s42452-020-03519-y
Comments (0)