Enhanced laser wakefield acceleration utilizing Hermite–Gaussian laser pulses in homogeneous plasma

A.E. Hussein et al., Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures. Sci. Rep. 9(1), 3249 (2019)

Article  ADS  Google Scholar 

M. Asadi Asadabad, M. Jafari Eskandari, Transmission electron microscopy as best technique for characterization in nanotechnology. Synth. React. Inorg. Metal-Org.Nano-Metal Chem. 45(3), 323–326 (2015)

Article  Google Scholar 

N. Marzari, A. Ferretti, C. Wolverton, Electronic-structure methods for materials design. Nat. Mater. 20(6), 736–749 (2021)

Article  ADS  Google Scholar 

M.G. Ronga et al., Back to the future: very high-energy electrons (VHEEs) and their potential application in radiation therapy. Cancers (Basel) 13(19), 4942 (2021)

Article  Google Scholar 

E. Amato, S. Casanova, On particle acceleration and transport in plasmas in the Galaxy: theory and observations. J. Plasma Phys. 87(1), 845870101 (2021)

Article  Google Scholar 

F.W. Low, C.W. Lai, Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 82, 103–125 (2018)

Article  Google Scholar 

A.V. Ponomarev, B.G. Ershov, The green method in water management: electron beam treatment. Environ. Sci. Technol. 54(9), 5331–5344 (2020)

Article  ADS  Google Scholar 

M. Vadrucci, A machine for ionizing radiation treatment of bio-deteriogens infesting artistic objects. Quantum Beam Sci 6(4), 33 (2022)

Article  ADS  Google Scholar 

T. Tajima and J. M. Dawson (1979), Laser electron accelerator,

S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 17(1), 381–388 (2022)

Article  Google Scholar 

S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by cross-focusing of Gaussian laser beams in the array of vertically aligned anharmonic and magnetized CNTs. OptCommun 513, 128112 (2022)

Google Scholar 

H.K. Midha, V. Sharma, N. Kant, V. Thakur, Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01413-5

Article  Google Scholar 

S. Kumar, S. Vij, N. Kant, A. Mehta, V. Thakur, Resonant terahertz generation from laser filaments in the presence of static electric field in a magnetized collisional plasma. European Phys. J. Plus 136(2), 148 (2021)

Article  Google Scholar 

S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron. 43(1), 30 (2022)

Article  ADS  Google Scholar 

S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of obliquely incident lasers with anharmonic CNTs acting as dipole antenna to generate resonant THz radiation. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2155330

Article  Google Scholar 

S. Kumar, N. Kant, V. Thakur, THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs. Opt Quant. Electron 55(3), 281 (2023)

Article  Google Scholar 

V. Thakur, N. Kant, Resonant second harmonic generation by a chirped laser pulse in a semiconductor. Optik (Stuttg) 130, 525–530 (2017)

Article  ADS  Google Scholar 

V. Thakur, S. Vij, V. Sharma, N. Kant, Influence of exponential density ramp on second harmonic generation by a short pulse laser in magnetized plasma. Optik (Stuttg) 171, 523–528 (2018)

Article  ADS  Google Scholar 

V. Sharma, V. Thakur, A. Singh, N. Kant, Third harmonic generation of a relativistic self-focusing laser in plasma under exponential density ramp. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences 77(4), 323–328 (2022)

Article  ADS  Google Scholar 

V. Thakur, N. Kant, Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front Phys. (Beijing) 11(4), 115202 (2016)

Article  ADS  Google Scholar 

V. Thakur, N. Kant, Stronger self-focusing of a chirped pulse laser with exponential density ramp profile in cold quantum magnetoplasma. Optik (Stuttg) 172, 191–196 (2018)

Article  ADS  Google Scholar 

V. Thakur, N. Kant, Stronger self-focusing of cosh-Gaussian laser beam under exponential density ramp in plasma with linear absorption. Optik (Stuttg) 183, 912–917 (2019)

Article  ADS  Google Scholar 

E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81(3), 1229–1285 (2009)

Article  ADS  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Excitation of the Laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01326-3

Article  Google Scholar 

H.R. Askari, A. Shahidani, Effect of magnetic field on production of wake field in laser–plasma interactions: Gaussian-like (GL) and rectangular–triangular (RT) pulses. Optik – Int. J. Light Electron Opt. 124(17), 3154–3161 (2013)

Article  Google Scholar 

R. Fallah, S.M. Khorashadizadeh, Electron acceleration in a homogeneous plasma by Bessel-Gaussian and Gaussian pulses. Contrib. Plasma Phys. 58(9), 878–889 (2018)

Article  ADS  Google Scholar 

V. Sharma, S. Kumar, To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)

Article  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53(6), 157 (2023)

Article  ADS  Google Scholar 

M. Abedi-Varaki, M.E. Daraei, Impact of wiggler magnetic field on wakefield generation and electron acceleration by Gaussian, super-Gaussian and Bessel-Gaussian laser pulses propagating in collisionless plasma. J. Plasma Phys. 89(1), 905890114 (2023)

Article  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt Quantum Electron 55(13), 1150 (2023)

Article  Google Scholar 

H.S. Ghotra, Laser wakefield and direct laser acceleration of electron by chirped laser pulses. Optik (Stuttg) 260, 169080 (2022)

Article  ADS  Google Scholar 

R. Fallah, S.M. Khorashadizadeh, Influence of Gaussian, super-Gaussian, and cosine-Gaussian pulse properties on the electron acceleration in a homogeneous plasma. IEEE Trans. Plasma Sci. 46(6), 2085–2090 (2018)

Article  ADS  Google Scholar 

D.N. Gupta, M. Yadav, A. Jain, S. Kumar, Electron bunch charge enhancement in laser wakefield acceleration using a flattened Gaussian laser pulse. Phys. Lett., Sect. A: General Atomic Solid State Phys. 414, 127631 (2021)

Article  MathSciNet  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01250-6

Article  Google Scholar 

K. Gopal, D.N. Gupta, H. Suk, Pulse-length effect on laser wakefield acceleration of electrons by skewed laser pulses. IEEE Trans. Plasma Sci. 49(3), 1152–1158 (2021)

Article  ADS  Google Scholar 

M. Abedi-Varaki, N. Kant, Magnetic field-assisted wakefield generation and electron acceleration by Gaussian and super-Gaussian laser pulses in plasma. Mod. Phys. Lett. B 36, 07 (2022)

Article  MathSciNet  Google Scholar 

N.H. Mohammed, N.E. Cho, E.A. Adegani, T. Bulboaca, Geometric properties of normalized imaginary error function. Studia Universitatis Babes-Bolyai Matematica 67(2), 455–462 (2022)

Article  MathSciNet  Google Scholar 

H.S. Ghotra, N. Kant, TEM modes influenced electron acceleration by Hermite–Gaussian laser beam in plasma. Laser Part. Beams 34(3), 385–393 (2016)

Article  ADS  Google Scholar 

D. Oumbarek Espinos et al., Notable improvements on LWFA through precise laser wavefront tuning. Sci Rep 13(1), 18466–98 (2023)

Article  ADS  Google Scholar 

Comments (0)

No login
gif