L.E.M. Matheus, A.B. Vieira, F.M. Vieira Luiz, M.A.M. Vieira, O. Gnawali, Visible light communication concepts, applications and challenges. IEEE Commun. Surv. Tutor. 21(4), 3204–3237 (2019). https://doi.org/10.1109/COMST.2019.2913348
P.H. Pathak, X. Feng, P. Hu, P. Mohapatra, Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutor. 17(4), 2047–2077 (2015). https://doi.org/10.1109/COMST.2015.2476474
D. Karunatilaka, F. Zafar, V. Kalavally, R. Parthiban, LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutor. 17(3), 1649–1678 (2015). https://doi.org/10.1109/COMST.2015.2417576
B. Vijayalakshmi, P. Gandhimathi, M. Nesasudha, VLC channel characteristics and data transmission model in indoor environment for future communication: an overview. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01316-5
L. Junhai, L. Fan, H. Li, Indoor positioning systems based on visible light communication: state of the art. IEEE Commun. Surv. Tutor. 19, 2871–2893 (2017). https://doi.org/10.1109/COMST.2017.2743228
D.H. Mai, H.D. Le, T.V. Pham, A.T. Pham, Design and performance evaluation of large-scale VLC-based indoor positioning systems under the impact of receiver orientation. IEEE Access 8, 61891–61904 (2020). https://doi.org/10.1109/ACCESS.2020.2984027
N.Q. Pham, V.P. Rachim, W.Y. Chung, High-accuracy VLC-based indoor positioning system using multi-level modulation. Opt. Express 27, 7568–7584 (2019). https://doi.org/10.1364/OE.27.007568
B. Lin, Q. Guo, C. Lin, X. Tang, Z. Zhou, Z. Ghassemlooy, Experimental demonstration of an indoor positioning system based on artificial neural network. Opt. Eng. 58, 016104 (2019). https://doi.org/10.1117/1.0E.58.1.016104
B. Lin, X. Tang, Z. Ghassemlooy, C. Lin, Y. Li, Experimental demonstration of an indoor VLC positioning system based on OFDMA. IEEE Photonics J. 9, 1–9 (2017). https://doi.org/10.1109/JPHOT.2017.2672038
Y. Almadani, D. Plets, S. Bastiaens, W. Joseph, M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, Visible light communications for industrial applications—Challenges and potentials. Electronics 9, 2157 (2020). https://doi.org/10.3390/electronics9122157
V.A. Reguera, L. Teixeira, C.H. Barriquello, D.H. Thomas, M.A.D. Costa, Efficient and low complexity rate and dimming control of VLC for industrial IoT applications. IEEE J. Emerg. Sel. Top. Ind. Electron. 3, 1087–1095 (2022). https://doi.org/10.1109/JESTIE.2022.3189570
W. Costa, H. Camporez, M. Segatto, H. Rocha, J. Silva, Towards AI-enhanced VLC Systems. Optical Fiber Communication Conference, Optica Publishing Group, W3I-7, (2022) https://doi.org/10.1364/OFC.2022.W3I.7
B.A. Vijayalakshmi, B. Arunsundar, A. Gopalan et al., An exploration on VLC channel model and characteristics using LEDs in underground mining. J. Opt. 52, 1399–1404 (2023). https://doi.org/10.1007/s12596-022-01054-0
L. Xicong, Z. Ghassemlooy, S. Zvánovec, P.A. Haigh, A 40 Mb/s VLC system reusing an existing large LED panel in an indoor office environment. Sensors 21, 1697 (2021). https://doi.org/10.3390/s21051697
S. Muñoz, C.A. Iglesias, A. Scheianu, G. Suciu, Semantic nalyser of a VLC-enabled task automation platform for smart offices. Electronics 11, 326 (2022). https://doi.org/10.3390/electronics11030326
X. Li, Z. Ghassemlooy, S. Zvanovec, P. A.Haigh, Experimental Demonstration of a 40 Mb/s VLC System Using a Large Off-the-Shelf LED Panel. IEEE 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–5, (2020) https://doi.org/10.1109/CSNDSP49049.2020.9249608
A.B. Vijayalakshmi, M. Nesasudha, Data transmission and inoffensive communication by dimmed LEDs using visible light communication technology. J. Opt. 52(1), 154–161 (2023). https://doi.org/10.1007/s12596-022-00901-4
D. Menaka, S. Gauni, C.T. Manimegalai, K. Kalimuthu, Vision of IoUT: advances and future trends in optical wireless communication. J. Opt. 50(3), 439–452 (2021). https://doi.org/10.1007/s12596-021-00722-x
H. Yang, W. Zhong, C. Chen, A. Alphones, Integration of visible light communication and positioning within 5G networks for internet of things. IEEE Netw. 34, 134–140 (2020). https://doi.org/10.1109/MNET.011.1900567
S. Idris, U. Mohammed, J. Sanusi, S. Thomas, Visible light communication: a potential 5G and beyond communication technology. IEEE 15th International Conference on Electronics, Computer and Computation (ICECCO), pp. 1–6, (2019) https://doi.org/10.1109/ICECCO48375.2019.9043201
S. Ariyanti, M. Suryanegara, Visible light communication (VLC) for 6G technology: the potency and research challenges. Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 490-493, (2020) 10.1109/WorldS450073.2020.9210383
M. Katz, I. Ahmed, Opportunities and challenges for visible light communications in 6G. 2nd 6G wireless summit (6G SUMMIT), 1–5, (2020) https://doi.org/10.1109/6GSUMMIT49458.2020.9083805
A. Gupta, X. Fernando, Exploring secure visible light communication in next-generation (6G) internet-of-things. International Wireless Communications and Mobile Computing (IWCMC), pp. 2090–2097, (2021) https://doi.org/10.1109/IWCMC51323.2021.9498740
V. Georlette, V. Moeyaert, S.Bette, N. Point, Visible light communication challenges in the frame of smart cities. IEEE 22nd International Conference on Transparent Optical Networks (ICTON), pp. 1–4, (2020) https://doi.org/10.1109/ICTON51198.2020.9203463
P. Mishra, G. Singh, 6G-IoT Framework for Sustainable Smart City: Vision and Challenges, Sustainable Smart Cities: Enabling Technologies (Energy Trends and Potential Applications. Springer International Publishing, Cham, 2023), pp.97–117. https://doi.org/10.1007/978-3-031-33354-5_5
A. Sarkar, R. Chakraborty, H. Dutta, LiFi-based energy-efficient traffic sensing and controlling system management for smart city application, in Environmental Informatics: Challenges and Solutions. (Springer Nature Singapore, Singapore, 2022), pp.213–226. https://doi.org/10.1007/978-981-19-2083-7_12
V. Georlette, M. Véronique, S. Bette, N. Point, Outdoor Optical Wireless Communication: Potentials, standardization and challenges for Smart Cities. IEEE 29th Wireless and Optical Communications Conference (WOCC), 1–6, (2020) https://doi.org/10.1109/WOCC48579.2020.9114953
M. Meucci, M. Seminara, T. Nawaz, S. Caputo, L. Mucchi, J. Catani, Bidirectional vehicle-to-vehicle communication system based on VLC: outdoor tests and performance analysis. IEEE Trans. Intell. Transp. Syst. 23, 11465–11475 (2021). https://doi.org/10.1109/TITS.2021.3104498
P. Sharda, G.S. Reddy, M.R. Bhatnagar, Z. Ghassemlooy, A comprehensive nalyser of vehicle-to-vehicle based VLC system under practical considerations, an investigation of performance, and diversity property. IEEE Trans. Commun. 70, 3320–3332 (2022). https://doi.org/10.1109/TCOMM.2022.3158325
F.A. Dahri, H.B. Mangrio, A. Baqai, F.A. Umrani, Experimental evaluation of intelligent transport system with VLC vehicle-to-vehicle communication. Wirel. Pers. Commun. 106, 1885–1896 (2019). https://doi.org/10.1007/s11277-018-5727-0
E. Plascencia, O. Shagdar, H. Guan, O. Barrois, L. Chassagne, Optical cdma mac evaluation in vehicle-to-vehicle visible light communications. Electronics 11, 1454 (2022). https://doi.org/10.3390/electronics11091454
R. Ji, S. Wang, Q. Liu, W. Lu, High-speed visible light communications: enabling technologies and state of the art. Appl. Sci. 8, 589 (2018). https://doi.org/10.3390/app8040589
S. Vappangi, V.V. Mani, Concurrent illumination and communication: a survey on visible light communication. Phys. Commun. 33, 90–114 (2019). https://doi.org/10.1016/j.phycom.2018.12.017
S.U. Rehman, S. Ullah, P.H.J. Chong, S. Yongchareon, D. Komosny, Visible light communication: a system perspective—overview and challenges. Sensors 19, 1153 (2019). https://doi.org/10.3390/s19051153
G.A. Mapunda, R. Ramogomana, L. Marata, B. Basutli, A.S. Khan, J.M. Chuma, Indoor visible light communication: a tutorial and survey. Wirel. Commun. Mob. Comput. (2020). https://doi.org/10.1155/2020/8881305
A.E. Ibhaze, P.E. Orukpe, F.O. Edeko, High capacity data rate system: review of visible light communications technology. J. Electron. Sci. Technol. 18, 100055 (2020). https://doi.org/10.1016/j.jnlest.2020.100055
M.T. Rahman, A.S.M. Bakibillah, R. Parthiban, M. Bakaul, Review of advanced techniques for multi-gigabit visible light communication. IET Optoelectron. 14, 359–373 (2020). https://doi.org/10.1049/iet-opt.2019.0120
T.C. Yu, W.T. Huang, W.B. Lee, C.W. Chow, S.W. Chang, H.C. Kuo, Visible light communication system technology review: devices, architectures, and applications. Crystals 11, 1098 (2021). https://doi.org/10.3390/cryst11091098
F.A.B. Merdan, S.P. Thiagarajah, K. Dambul, Non-line of sight visible light communications: a technical and application-based survey. Optik 259, 168982 (2022). https://doi.org/10.1016/j.ijleo.2022.168982
S. Vappangi, V.V. Mani, A survey on the integration of visible light communication with power line communication: conception, applications and research challenges. Optik 266, 169582 (2022). https://doi.org/10.1016/j.ijleo.2022.169582
L. Kwonhyung, H. Park, J.R. Barry, Indoor channel characteristics for visible light communications. IEEE Commun. Lett. 15(2), 217–219 (2011). https://doi.org/10.1109/LCOMM.2011.010411.101945
X. Yang, M. Zhang, M. Kavehrad, M.I.S. Chowdhury, C. Li, R. Chen, J. Wu, X. Tang, Multiband channel characteristics for indoor visible light communications. Opt. Eng. (2014). https://doi.org/10.1109/LCOMM.2011.010411.101945
L. Shihe, M.A. Khalighi, M. Wolf, S. Bourennane, Z. Ghassemlooy, Channel characterization for indoor visible light communications. 3rd International Workshop in Optical Wireless Communications (IWOW), pp. 75–79, IEEE (2014) https://doi.org/10.1109/IWOW.2014.6950780
S. S. Muhammad, Delay profiles for indoor diffused visible light communication. 13th International Conference on Telecommunications (ConTEL), Graz, Austria, pp. 1–5, (2015) https://doi.org/10.1109/ConTEL.2015.7231193
M. Farshad, M. Uysal, Channel nalyser and characterization for visible light communications. IEEE Photonics J. 7(6), 1–6 (2015). https://doi.org/10.1109/JPHOT.2015.2504238
L. Shihe, M.A. Khalighi, M. Wolf, S. Bourennane, Z. Ghassemlooy, Investigating channel frequency selectivity in indoor visible-light communication systems. IET Optoelectron. 10(3), 80–88 (2016). https://doi.org/10.1049/iet-opt.2015.0015
U. Murat, F. Miramirkhani, O. Narmanlioglu, T. Baykas, E. Panayirci, IEEE 802.15. 7r1 reference channel models for visible light communications. IEEE Commun. Magaz. 55(1), 212–217 (2017). https://doi.org/10.1109/MCOM.2017.1600872CM
G. Akash, P. Garg, Statistics of SNR for an indoor VLC system and its applications in system performance. IEEE Commun. Lett. 22(9), 1898–1901 (2018). https://doi.org/10.1109/LCOMM.2018.2859990
M. Farshad, M. Uysal, Channel modelling for indoor visible light communications. Philos. Trans. R. Soc. A 378(2169), 20190187 (2020). https://doi.org/10.1098/rsta.2019.0187
Comments (0)