Experimental estimation of quality of service parameters at divergent wavelengths and luminous intensities for indoor visible light communication using OOK-NRZ modulation

L.E.M. Matheus, A.B. Vieira, F.M. Vieira Luiz, M.A.M. Vieira, O. Gnawali, Visible light communication concepts, applications and challenges. IEEE Commun. Surv. Tutor. 21(4), 3204–3237 (2019). https://doi.org/10.1109/COMST.2019.2913348

Article  Google Scholar 

P.H. Pathak, X. Feng, P. Hu, P. Mohapatra, Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutor. 17(4), 2047–2077 (2015). https://doi.org/10.1109/COMST.2015.2476474

Article  Google Scholar 

D. Karunatilaka, F. Zafar, V. Kalavally, R. Parthiban, LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutor. 17(3), 1649–1678 (2015). https://doi.org/10.1109/COMST.2015.2417576

Article  Google Scholar 

B. Vijayalakshmi, P. Gandhimathi, M. Nesasudha, VLC channel characteristics and data transmission model in indoor environment for future communication: an overview. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01316-5

Article  Google Scholar 

L. Junhai, L. Fan, H. Li, Indoor positioning systems based on visible light communication: state of the art. IEEE Commun. Surv. Tutor. 19, 2871–2893 (2017). https://doi.org/10.1109/COMST.2017.2743228

Article  Google Scholar 

D.H. Mai, H.D. Le, T.V. Pham, A.T. Pham, Design and performance evaluation of large-scale VLC-based indoor positioning systems under the impact of receiver orientation. IEEE Access 8, 61891–61904 (2020). https://doi.org/10.1109/ACCESS.2020.2984027

Article  Google Scholar 

N.Q. Pham, V.P. Rachim, W.Y. Chung, High-accuracy VLC-based indoor positioning system using multi-level modulation. Opt. Express 27, 7568–7584 (2019). https://doi.org/10.1364/OE.27.007568

Article  ADS  Google Scholar 

B. Lin, Q. Guo, C. Lin, X. Tang, Z. Zhou, Z. Ghassemlooy, Experimental demonstration of an indoor positioning system based on artificial neural network. Opt. Eng. 58, 016104 (2019). https://doi.org/10.1117/1.0E.58.1.016104

Article  ADS  Google Scholar 

B. Lin, X. Tang, Z. Ghassemlooy, C. Lin, Y. Li, Experimental demonstration of an indoor VLC positioning system based on OFDMA. IEEE Photonics J. 9, 1–9 (2017). https://doi.org/10.1109/JPHOT.2017.2672038

Article  Google Scholar 

Y. Almadani, D. Plets, S. Bastiaens, W. Joseph, M. Ijaz, Z. Ghassemlooy, S. Rajbhandari, Visible light communications for industrial applications—Challenges and potentials. Electronics 9, 2157 (2020). https://doi.org/10.3390/electronics9122157

Article  Google Scholar 

V.A. Reguera, L. Teixeira, C.H. Barriquello, D.H. Thomas, M.A.D. Costa, Efficient and low complexity rate and dimming control of VLC for industrial IoT applications. IEEE J. Emerg. Sel. Top. Ind. Electron. 3, 1087–1095 (2022). https://doi.org/10.1109/JESTIE.2022.3189570

Article  Google Scholar 

W. Costa, H. Camporez, M. Segatto, H. Rocha, J. Silva, Towards AI-enhanced VLC Systems. Optical Fiber Communication Conference, Optica Publishing Group, W3I-7, (2022) https://doi.org/10.1364/OFC.2022.W3I.7

B.A. Vijayalakshmi, B. Arunsundar, A. Gopalan et al., An exploration on VLC channel model and characteristics using LEDs in underground mining. J. Opt. 52, 1399–1404 (2023). https://doi.org/10.1007/s12596-022-01054-0

Article  Google Scholar 

L. Xicong, Z. Ghassemlooy, S. Zvánovec, P.A. Haigh, A 40 Mb/s VLC system reusing an existing large LED panel in an indoor office environment. Sensors 21, 1697 (2021). https://doi.org/10.3390/s21051697

Article  ADS  Google Scholar 

S. Muñoz, C.A. Iglesias, A. Scheianu, G. Suciu, Semantic nalyser of a VLC-enabled task automation platform for smart offices. Electronics 11, 326 (2022). https://doi.org/10.3390/electronics11030326

Article  Google Scholar 

X. Li, Z. Ghassemlooy, S. Zvanovec, P. A.Haigh, Experimental Demonstration of a 40 Mb/s VLC System Using a Large Off-the-Shelf LED Panel. IEEE 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–5, (2020) https://doi.org/10.1109/CSNDSP49049.2020.9249608

A.B. Vijayalakshmi, M. Nesasudha, Data transmission and inoffensive communication by dimmed LEDs using visible light communication technology. J. Opt. 52(1), 154–161 (2023). https://doi.org/10.1007/s12596-022-00901-4

Article  Google Scholar 

D. Menaka, S. Gauni, C.T. Manimegalai, K. Kalimuthu, Vision of IoUT: advances and future trends in optical wireless communication. J. Opt. 50(3), 439–452 (2021). https://doi.org/10.1007/s12596-021-00722-x

Article  Google Scholar 

H. Yang, W. Zhong, C. Chen, A. Alphones, Integration of visible light communication and positioning within 5G networks for internet of things. IEEE Netw. 34, 134–140 (2020). https://doi.org/10.1109/MNET.011.1900567

Article  Google Scholar 

S. Idris, U. Mohammed, J. Sanusi, S. Thomas, Visible light communication: a potential 5G and beyond communication technology. IEEE 15th International Conference on Electronics, Computer and Computation (ICECCO), pp. 1–6, (2019) https://doi.org/10.1109/ICECCO48375.2019.9043201

S. Ariyanti, M. Suryanegara, Visible light communication (VLC) for 6G technology: the potency and research challenges. Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 490-493, (2020) 10.1109/WorldS450073.2020.9210383

M. Katz, I. Ahmed, Opportunities and challenges for visible light communications in 6G. 2nd 6G wireless summit (6G SUMMIT), 1–5, (2020) https://doi.org/10.1109/6GSUMMIT49458.2020.9083805

A. Gupta, X. Fernando, Exploring secure visible light communication in next-generation (6G) internet-of-things. International Wireless Communications and Mobile Computing (IWCMC), pp. 2090–2097, (2021) https://doi.org/10.1109/IWCMC51323.2021.9498740

V. Georlette, V. Moeyaert, S.Bette, N. Point, Visible light communication challenges in the frame of smart cities. IEEE 22nd International Conference on Transparent Optical Networks (ICTON), pp. 1–4, (2020) https://doi.org/10.1109/ICTON51198.2020.9203463

P. Mishra, G. Singh, 6G-IoT Framework for Sustainable Smart City: Vision and Challenges, Sustainable Smart Cities: Enabling Technologies (Energy Trends and Potential Applications. Springer International Publishing, Cham, 2023), pp.97–117. https://doi.org/10.1007/978-3-031-33354-5_5

Book  Google Scholar 

A. Sarkar, R. Chakraborty, H. Dutta, LiFi-based energy-efficient traffic sensing and controlling system management for smart city application, in Environmental Informatics: Challenges and Solutions. (Springer Nature Singapore, Singapore, 2022), pp.213–226. https://doi.org/10.1007/978-981-19-2083-7_12

Chapter  Google Scholar 

V. Georlette, M. Véronique, S. Bette, N. Point, Outdoor Optical Wireless Communication: Potentials, standardization and challenges for Smart Cities. IEEE 29th Wireless and Optical Communications Conference (WOCC), 1–6, (2020) https://doi.org/10.1109/WOCC48579.2020.9114953

M. Meucci, M. Seminara, T. Nawaz, S. Caputo, L. Mucchi, J. Catani, Bidirectional vehicle-to-vehicle communication system based on VLC: outdoor tests and performance analysis. IEEE Trans. Intell. Transp. Syst. 23, 11465–11475 (2021). https://doi.org/10.1109/TITS.2021.3104498

Article  Google Scholar 

P. Sharda, G.S. Reddy, M.R. Bhatnagar, Z. Ghassemlooy, A comprehensive nalyser of vehicle-to-vehicle based VLC system under practical considerations, an investigation of performance, and diversity property. IEEE Trans. Commun. 70, 3320–3332 (2022). https://doi.org/10.1109/TCOMM.2022.3158325

Article  Google Scholar 

F.A. Dahri, H.B. Mangrio, A. Baqai, F.A. Umrani, Experimental evaluation of intelligent transport system with VLC vehicle-to-vehicle communication. Wirel. Pers. Commun. 106, 1885–1896 (2019). https://doi.org/10.1007/s11277-018-5727-0

Article  Google Scholar 

E. Plascencia, O. Shagdar, H. Guan, O. Barrois, L. Chassagne, Optical cdma mac evaluation in vehicle-to-vehicle visible light communications. Electronics 11, 1454 (2022). https://doi.org/10.3390/electronics11091454

Article  Google Scholar 

R. Ji, S. Wang, Q. Liu, W. Lu, High-speed visible light communications: enabling technologies and state of the art. Appl. Sci. 8, 589 (2018). https://doi.org/10.3390/app8040589

Article  Google Scholar 

S. Vappangi, V.V. Mani, Concurrent illumination and communication: a survey on visible light communication. Phys. Commun. 33, 90–114 (2019). https://doi.org/10.1016/j.phycom.2018.12.017

Article  Google Scholar 

S.U. Rehman, S. Ullah, P.H.J. Chong, S. Yongchareon, D. Komosny, Visible light communication: a system perspective—overview and challenges. Sensors 19, 1153 (2019). https://doi.org/10.3390/s19051153

Article  ADS  Google Scholar 

G.A. Mapunda, R. Ramogomana, L. Marata, B. Basutli, A.S. Khan, J.M. Chuma, Indoor visible light communication: a tutorial and survey. Wirel. Commun. Mob. Comput. (2020). https://doi.org/10.1155/2020/8881305

Article  Google Scholar 

A.E. Ibhaze, P.E. Orukpe, F.O. Edeko, High capacity data rate system: review of visible light communications technology. J. Electron. Sci. Technol. 18, 100055 (2020). https://doi.org/10.1016/j.jnlest.2020.100055

Article  Google Scholar 

M.T. Rahman, A.S.M. Bakibillah, R. Parthiban, M. Bakaul, Review of advanced techniques for multi-gigabit visible light communication. IET Optoelectron. 14, 359–373 (2020). https://doi.org/10.1049/iet-opt.2019.0120

Article  Google Scholar 

T.C. Yu, W.T. Huang, W.B. Lee, C.W. Chow, S.W. Chang, H.C. Kuo, Visible light communication system technology review: devices, architectures, and applications. Crystals 11, 1098 (2021). https://doi.org/10.3390/cryst11091098

Article  Google Scholar 

F.A.B. Merdan, S.P. Thiagarajah, K. Dambul, Non-line of sight visible light communications: a technical and application-based survey. Optik 259, 168982 (2022). https://doi.org/10.1016/j.ijleo.2022.168982

Article  ADS  Google Scholar 

S. Vappangi, V.V. Mani, A survey on the integration of visible light communication with power line communication: conception, applications and research challenges. Optik 266, 169582 (2022). https://doi.org/10.1016/j.ijleo.2022.169582

Article  ADS  Google Scholar 

L. Kwonhyung, H. Park, J.R. Barry, Indoor channel characteristics for visible light communications. IEEE Commun. Lett. 15(2), 217–219 (2011). https://doi.org/10.1109/LCOMM.2011.010411.101945

Article  Google Scholar 

X. Yang, M. Zhang, M. Kavehrad, M.I.S. Chowdhury, C. Li, R. Chen, J. Wu, X. Tang, Multiband channel characteristics for indoor visible light communications. Opt. Eng. (2014). https://doi.org/10.1109/LCOMM.2011.010411.101945

Article  Google Scholar 

L. Shihe, M.A. Khalighi, M. Wolf, S. Bourennane, Z. Ghassemlooy, Channel characterization for indoor visible light communications. 3rd International Workshop in Optical Wireless Communications (IWOW), pp. 75–79, IEEE (2014) https://doi.org/10.1109/IWOW.2014.6950780

S. S. Muhammad, Delay profiles for indoor diffused visible light communication. 13th International Conference on Telecommunications (ConTEL), Graz, Austria, pp. 1–5, (2015) https://doi.org/10.1109/ConTEL.2015.7231193

M. Farshad, M. Uysal, Channel nalyser and characterization for visible light communications. IEEE Photonics J. 7(6), 1–6 (2015). https://doi.org/10.1109/JPHOT.2015.2504238

Article  Google Scholar 

L. Shihe, M.A. Khalighi, M. Wolf, S. Bourennane, Z. Ghassemlooy, Investigating channel frequency selectivity in indoor visible-light communication systems. IET Optoelectron. 10(3), 80–88 (2016). https://doi.org/10.1049/iet-opt.2015.0015

Article  Google Scholar 

U. Murat, F. Miramirkhani, O. Narmanlioglu, T. Baykas, E. Panayirci, IEEE 802.15. 7r1 reference channel models for visible light communications. IEEE Commun. Magaz. 55(1), 212–217 (2017). https://doi.org/10.1109/MCOM.2017.1600872CM

Article  Google Scholar 

G. Akash, P. Garg, Statistics of SNR for an indoor VLC system and its applications in system performance. IEEE Commun. Lett. 22(9), 1898–1901 (2018). https://doi.org/10.1109/LCOMM.2018.2859990

Article  Google Scholar 

M. Farshad, M. Uysal, Channel modelling for indoor visible light communications. Philos. Trans. R. Soc. A 378(2169), 20190187 (2020). https://doi.org/10.1098/rsta.2019.0187

Article 

Comments (0)

No login
gif