Tarafder, P. K., Mondal, R. K. (2011). A review on the complex forming ability of O-O′ type ligands with transition metals: Introducing 2,3-dihydroxynaphthalene as a potential analytical reagent, Rev. Anal. Chem., 30(2), 73–81. https://doi.org/10.1515/REVAC.2011.016
Savvin, S. B., Shtykov, S. N., Mikhailova, A. V. (2006). Organic reagents in spectrophotometric methods of analysis, Russ. Chem. Rev., 75(4), 341–349. https://doi.org/10.1070/RC2006v075n04ABEH001189
Snigur, D., Barbalat, D., Chebotarev, A., Synievyd, A., Bevziuk, K. (2021). A rapid cloud point extraction of Molybdenum(VI) with 6,7-dihydroxy-2,4-diphenylbenzopyrylium perchlorate prior to its spectrophotometric determination. Chem. Papers. 75, 1823–1830. http://dx.doi.org/10.1007/s11696-020-01436-3.
Zhukovetska, O. M., Guzenko, E. M., Chebotarev, A. N., Snigur, D. V. (2022). [Solid-phase spectrophotometric determination of Mo(VI) using organopolymeric cation exchange resin KU-2-8 modified by 6,7-dihydroxy-2-phenyl-4-methylbenzopyrylium chloride]. Methods Objects Chem. Anal. 17, 10–16. (in Ukrainian)
http://dx.doi.org/10.17721/moca.2022.10-16
Snigur, D., Azooz, E. A., Zhukovetska, O., Guzenko, O., Mortada, W. (2023). Recent innovations in cloud point extraction towards a more efficient and environmentally friendly procedure, TrAC, Trends Anal. Chem., 164, 117113. https://doi.org/10.1016/j.trac.2023.117113
Snigur, D., Barbalat, D., Fizer, M., Chebotarev, A., Shishkina, S. (2020). Synthesis and properties of 6,7-dihydroxybenzopyrylium perchlorate halogen derivatives: X-ray, spectroscopic and theoretical studies. Tetrahedron. 76, 131514. https://doi.org/10.1016/j.tet.2020.131514.
Fizer, M., Fizer, O., Barbalat, D., Shishkina, S., Snigur, D. (2022). Structural peculiarities of new benzopyrylium dyes: X-ray, FT-IR, and DFT complex study. J. Molec. Struct. 1252, 132178. https://doi.org/10.1016/j.molstruc.2021.132178.
Sabarudin, A., Umemura, T., Motomizu, S. (2011). Chitosan functionalized with di-2-propanolamine: Its application as solid phase extractant for the determination of germanium in water samples by ICP-MS. Microchem. J. 99, 34–39. https://doi.org/10.1016/j.microc.2011.03.004
Ponomarenko, O., Samchuk, A., Vovk, K., Shvaika, I., Grodzinskaya, G. (2019). Germanium determination in environmental object by the method of mass spectrometry with inductively coupled plasma. Ukrainian Chemistry Journal, 85(4), 110–113. https://doi.org/10.33609/0041-6045.85.4.2019.110-113
McMahon, M., Regan, F., Hughes, H. (2006). The determination of total germanium in real food samples including Chinese herbal remedies using graphite furnace atomic absorption spectroscopy. Food Chem. 97, 411–417. https://doi.org/10.1016/j.foodchem.2005.05.018
Matusiewicz, H., Krawczyk, M. (2000). Determination of germanium and tin and inorganic tin species by hydride generation in situ trapping flame atomic absorption spectrometry. Anal. Lett. 43, 2543–2562. https://doi.org/10.1080/00032711003725631
Boÿkübayram, A. E., Volkan, M. (2000). Cloud point preconcentration of germanium and determination by hydride generation atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 55: 1073–1080. https://doi.org/10.1016/S0584-8547(00)00233-0
Schreiter, N., Wiche, O., Aubel, I., Roode-Gutzmer, Q., Bertau, M. (2021). Determination of germanium in plant and soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with solid sampling, Journal of Geochemical Exploration, 220, 106674, https://doi.org/10.1016/j.gexplo.2020.106674.
Kaya, M., Volkan, M. (2011). Germanium determination by flame atomic absorption spectrometry: An increased vapor pressure-chloride generation system, Talanta, 84(1), 122–126. https://doi.org/10.1016/j.talanta.2010.12.029
Skwarczynska-Wojsa, A.L., Piech, A. & Wojton, A. (2021). Determination of germanium and other trace elements concentration in mineral waters of Low Beskid (Poland) used for crenotherapy. Environ Earth Sci, 80, 57 https://doi.org/10.1007/s12665-020-09344-1
Ezer, M., Gondi, R., Kennehan, E., Simeonsson, J. B. (2019). Trace determination of Germanium by continuous flow hydride generation laser-induced fluorescence spectrometry, Anal. Lett., 52(7), 1125–1137. https://doi.org/10.1080/00032719.2018.1521827
Gökmeşe, F., Gökmeşe, E., Solak, A.O. (2008) A new adsorptive square-wave stripping voltammetric method for the trace analysis of germanium. Hacettepe J. Biol. Chem. 36, 215–221.
Nazarenko, V. A., Antonovich, V. P. (1973). [Trioxyfluorones]. Moscow, USSR: Nauka (in Russian).
Soylak, M., Yigit, S. (2015) Preconcentration–separation of germanium at ultra-trace levels on polysulfone membrane filter and its determination by spectrophotometry. J. Ind. Eng. Chem. 24, 322–325. https://doi.org/10.1016/j.jiec.2014.10.003
Tomita, H., Samukawa, N., Asano, M., Yamaguchi, T., Matsumura, H., Fujita, Y. (2016) Spectrophotometric determination of germanium(IV) and organogermanes with o-sulfophenylfluorone. Bunseki kagaku. 65, 465–470. https://doi.org/10.2116/bunsekikagaku.65.465
Ivanyca, L.A., Klymkyna, A.Ju., Chmylenko, T.S., Chmylenko F.A. (2016). [Determination of tin and germanium with nonylfluorone and polymer flocculants in plant materials], Vìsnik Dnìpropetrovs’kogo unìversitetu. Serìâ hìmìâ, 24(1), 27–35. (in Ukrainian) https://doi.org/10.15421/081605
Marchenko, Z., Bal’tsezhak, M. (2007). [Methods of spectrophotometry in UV and visual regions in Inorganic Analysis]. Moscow, BINOM. Laboratoriya znanii. 2007. (in Russian).
Selivanova, T., Vishnikin, A., Tsiganok, L. (2020). Visual test determination of trace amounts of germanium in the form of an ionic associate of 12-molybdogermanate with astrafloxin, E3S Web of Conferences, 166, 01013. https://doi.org/10.1051/e3sconf/202016601013
Chyvyreva, N. A., Stojanova, Y. V., Antonovych, V. P., Zynchenko, V. F., Chuhryj, Ju. P. (2018) [Detection and determination of chemical forms of germanium in objects of various natures], Visn. Odes. nac. univ., Him., 23(4), 6–22. http://dx.doi.org/10.18524/2304-0947.2018.4(68).147811
Barbalat, D.A., Chebotarev, A.N., Snigur, D.V. (2020) Anion nature influence on spectral and some physico-chemical properties of 6,7-dihydroxy-4-methyl-2-phenylchromenylium salts. Russ. J. Gen. Chem., 90(4), 597–601. https://doi.org/10.1134/S1070363220040064
Comments (0)