Yurchenko, O. І., Chernozhuk, T. V., Pateleymonov, A. V., Baklanova, L. V., Baklanov, O. M. (2022), [Analytical chemistry of table salt, brines and highly mineralized waters]. Kharkіv: V.N. Karazіn Kharkiv National University. (in Ukrainian) https://ekhnuir.karazin.ua/handle/123456789/18347
Pourgheysari, H, Moazeni, M, Ebrahimi, A. (2012). Heavy metal content in edible salts in Isfahan and estimation of their daily intake via salt consumption. Int J Env Health Eng. 2012, 1(1), 41–45. https://doi.org/10.4103/2277-9183.94392
Jіa, X., Gong, D., Xu, B, Chі, Q., Zhang, X. (2016). Development of a novel, fast, sensitive method for chromium speciation іn wastewater based on an organic polymer as solid phase extraction material combined with HPLC–ІCP-MS. Talanta, 147, 155–161. https://doi.org/10.1016/j.talanta.2015.09.047
Houda, P. S. Ed. (2021). Trace elements in soils. Chichester, Great Britain: J. Wiley & Sons. https://doi.org/10.13140/RG.2.2.26667.26407
Rizwan, M., Haider, M., Ul Hassan, A., Ali. S. (2017). Determination of heavy metals in the different samples of table salt. J. Basic Appl. Sci., 13, 198–202. https://doi.org/10.6000/1927-5129.2017.13.34
Chan, M. W. H., Hasan, K. A., Balthazar-Silva, D., Mirani, Z. A., Ashgar, M. (2021). Evaluation of heavy metal pollutants in salt and seawater under the influence of the Lyari River and potential health risk assessment. Marine. Pollution. Bull., 166, 112215. https://doi.org/10.1016/j.marpolbul.2021.112215
Nyaba, L., Nomngongo, P. N. (2020). Determination of trace metals in vegetables and water samples using dispersive ultrasound-assisted cloud point-dispersive µ-solid phase extraction coupled with inductively coupled plasma optical emission spectrometry. Food Chem. 322, 126749. https://doi.org/10.1016/j.foodchem.2020.126749
Zhaі, H.-M., Jі, B., Tіan, S.-S., Fang, F., Zhao, S., Wu, Z.-Y. (2021). Cr speciation analysis based on electrokіnetіc sample pretreatment with a paper based analytical device. Talanta, 234, 122656. https://doi.org/10.1016/j.talanta.2021.122656
Soylak, M., Peker, D. S. K., Turkoglu, O. (2008). Heavy metal contents of refined and unrefined table salts from Turkey, Egypt and Greece. Environ. Monit. Assess., 143, 267–272. https://doi.org/10.1007/s10661-007-9975-9
Yurchenko, O. І., Chernozhuk, T. V., Kravchenko, O. A., Baklanov, A. N. (2024). Atomic-absorption determination of chromium in table salt using matrix extraction separation and ultrasound action. J. Chem. Technologies, 32(1), 75–82. (in Ukrainian) https://doi.org/10.15421/jchemtech.v32i1.285484
Mohammadi, S., Kosari, A., Moghadam, E. F., Ghaffarian-Bahraman, A. (2025). Toxic metal contamination in edible salts and its attributed human health risks: a systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int., 32, 4313–4324. https://doi.org/10.1007/s11356-025-35940-4
Andrade, J. K., Andrade, C. K., Felsner, M. L., Anjos, V. E. (2019). Ultrasound-assisted emulsification microextraction combined with graphite furnace atomic absorption spectrometry for the chromium speciation in water samples. Talanta, 191, 94–102. https://doi.org/10.1016/j.talanta.2018.07.067
Gilbert, T. R., Clay, A.M. (1973). Determination of chromium in sea water by atomic absorption spectrometry. Anal. Chim. Acta, 67, 289–295. https://doi.org/10.1016/S0003-2670(01)80863-1
Jia, X., Gong, D., Xu, B., Chi, Q., Zhang, X. (2016). Development of a novel, fast, sensitive method for chromium speciation in wastewater based on an organic polymer as solid phase extraction material combined with HPLC–ICP-MS. Talanta, 147, 155–161. https://doi.org/10.1016/j.talanta.2015.09.047
Petrova, A., Ishimatsu, R., Nakano, K., Imato, T., Vishnikin, A. B., Moskvin, L. N., Bulatov, A. V. (2016). Flow-injection spectrophotometric determination of cysteine in biologically active dietary supplements. J. Anal. Chem., 71(2), 172–178. https://doi.org/10.1134/S1061934816020118
Vishnikin, A. B. (2011). Determination of ascorbic acid with Wells-Dawson type molybdophosphate in sequential injection system. Anal. Lett., 44, 514–527. https://doi.org/10.1080/00032719.2010.500789
Yan, J., Zhang, C., Wang, C., Lu, D., Chen, S. (2023). A novel separation and preconcentration methodology based on direct іmmersіon dual-drop microextraction for speciation of іnorganіc chromium in environmental water samples. Talanta, 255, 123902. https://doi.org/10.1016/j.talanta.2022.123902
Zhai, H.-M., Ji, B., Tian, S.-S., Fang, F., Zhao, S., Wu, Z-Y. (2021). Cr speciation analysis based on electrokinetic sample pretreatment with a paper based analytical device. Talanta, 234, 122656. https://doi.org/10.1016/j.talanta.2021.122656
Muhammed, A., Hussen, A., Kaneta, T. (2021). Speciation of chromium in water samples using microfluidic paper-based analytical devices with online oxidation of trivalent chromium. Anal. Bioanal. Chem., 413, 3339–3347. https://doi.org/10.1007/s00216-021-03274-y
Cordero, M. T. S., Alonso, E. I. V., de Torres, A. G., Pavon, J. M. C. (2004). Development of a new system for the speciation of chromium in natural waters and human urine samples by combining ion exchange and ETA-AAS. J. Anal. At. Spectrom., 19, 398–403. https://doi.org/10.1039/B312224G
Simonova, T. N., Dubrovina, V. A., Vishnikin, A. B. (2016). Speciation of chromium through aqueous two-phase extraction of complexes of Cr(III) with 4-(2-pyridylazo)resorcinol and Cr(VI) with 1,5-diphenylcarbazide. J. Serb. Chem Soc., 81(6), 645–659. https://doi.org/10.2298/JSC150630016S
Yurchenko, O. І., Chernozhuk, T. V., Kravchenko, O. A., Baklanov, A. N. (2023). [Atomіc absorptіon and X-ray fluorescent detectіon of chromіum and cobalt іn pharmaceutіcals]. J. Chem. Technologies. 31(1), 37–43. (in Ukrainian) https://doi.org/10.15421/jchemtech.v31i1.238921
Ghazi, H. K., Duij, A.-A. H. (2024). Comparison between untreated and processed table salt in the detection of heavy metals by atomic absorption spectrometer. AIP Conf. Proc., 3229, 050008. https://doi.org/10.1063/5.0239735
Baker, H. F., Rahoomi, T. D., Abdel-Halim, H. (2022). Spectrophotometric method for determination of chromium ion in aqueous solution using ninhydrin. Amer. J. Anal. Chem., 13(10), 32–37. https://doi.org/10.4236/ajac.2022.1310026
Yurchenko, O., Baklanov, A., Chernozhuk, T. (2021). Chemical applications of ultrasound: On the use of ultrasound in the analysis and technology of brains and sodium chloride solutions. LAP LAMBERT Academic Publishing.
Priego-Capot, F., Luque de Castro, M. D. (2004). Analytical uses of ultrasound-I. Sample preparation. TrAC Trends Anal. Chem., 23(9), 644–653. https://doi.org/10.1016/j.trac.2004.06.006
Capelo-Martínez, J.-L. Ed. (2008). Ultrasound in Chemistry: Analytical Applications. Wiley. https://doi.org/10.1002/9783527623501
Priego-Capot, F., Luque de Castro, M.D. (2007). Ultrasound in analytical chemistry. Anal. Bioanal. Chem., 387, 249–257. https://doi.org/10.1007/s00216-006-0966-4
Yurchenko, O. I., Chernozhuk, Т. V., Baklanov, A. N., Baklanova, L. V., Kravchenko, O. A. (2018). [Analytical signal amplification technologies in sonoluminescence spectroscopy by double-frequency ultrasound]. Methods Objects Chem. Anal., 13(3), 103–109. (in Russian) https://doi.org/10.17721/moca.2018.103-109
Comments (0)