Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).
Article CAS PubMed Google Scholar
Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).
Article CAS PubMed PubMed Central Google Scholar
Bonnal, S. C., Lopez-Oreja, I. & Valcarcel, J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat. Rev. Clin. Oncol. 17, 457–474 (2020).
Pistoni, M., Ghigna, C. & Gabellini, D. Alternative splicing and muscular dystrophy. RNA Biol. 7, 441–452 (2010).
Article CAS PubMed Google Scholar
Quesnel-Vallieres, M., Weatheritt, R. J., Cordes, S. P. & Blencowe, B. J. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat. Rev. Genet. 20, 51–63 (2019).
Article CAS PubMed Google Scholar
Naro, C. et al. An orchestrated intron retention program in meiosis controls timely usage of transcripts during germ cell differentiation. Dev. Cell 41, 82–93 (2017).
Article CAS PubMed PubMed Central Google Scholar
Thomas, J. D. et al. RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons. Nat. Genet. 52, 84–94 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 406–420 (2019).
Article CAS PubMed PubMed Central Google Scholar
Marasco, L. E. & Kornblihtt, A. R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24, 242–254 (2022).
Irimia, M. et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159, 1511–1523 (2014).
Article CAS PubMed PubMed Central Google Scholar
Romero, P. R. et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl Acad. Sci. USA 103, 8390–8395 (2006).
Article CAS PubMed PubMed Central Google Scholar
Weatheritt, R. J., Davey, N. E. & Gibson, T. J. Linear motifs confer functional diversity onto splice variants. Nucleic Acids Res. 40, 7123–7131 (2012).
Article CAS PubMed PubMed Central Google Scholar
Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged landscape of alternative splicing. Nat. Struct. Mol. Biol. 23, 1117–1123 (2016).
Article CAS PubMed PubMed Central Google Scholar
Sinitcyn, P. et al. Global detection of human variants and isoforms by deep proteome sequencing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01714-x (2023). This paper demonstrates the abundance of splicing-derived protein isoforms at the protein level using deep-coverage mass spectrometry.
Gabut, M. et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147, 132–146 (2011).
Article CAS PubMed Google Scholar
Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein–protein interaction networks. Mol. Cell 46, 884–892 (2012).
Article CAS PubMed Google Scholar
Weatheritt, R. J. & Gibson, T. J. Linear motifs: lost in (pre)translation. Trends Biochem. Sci. 37, 333–341 (2012).
Article CAS PubMed Google Scholar
Chatterjee, T. K. & Fisher, R. A. Mild heat and proteotoxic stress promote unique subcellular trafficking and nucleolar accumulation of RGS6 and other RGS proteins. Role of the RGS domain in stress-induced trafficking of RGS proteins. J. Biol. Chem. 278, 30272–30282 (2003).
Article CAS PubMed Google Scholar
Chatterjee, T. K., Liu, Z. & Fisher, R. A. Human RGS6 gene structure, complex alternative splicing, and role of N terminus and G protein γ-subunit-like (GGL) domain in subcellular localization of RGS6 splice variants. J. Biol. Chem. 278, 30261–30271 (2003).
Article CAS PubMed Google Scholar
Dudek, S. M., Birukov, K. G., Zhan, X. & Garcia, J. G. Novel interaction of cortactin with endothelial cell myosin light chain kinase. Biochem. Biophys. Res. Commun. 298, 511–519 (2002).
Article CAS PubMed Google Scholar
Seo, P. S. et al. Alternatively spliced exon 5 of the FERM domain of protein 4.1R encodes a novel binding site for erythrocyte p55 and is critical for membrane targeting in epithelial cells. Biochim. Biophys. Acta 1793, 281–289 (2009).
Article CAS PubMed Google Scholar
Day, J. M. et al. Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins. J. Biol. Chem. 279, 12511–12518 (2004).
Article CAS PubMed Google Scholar
Erdmann, K. S. et al. The adenomatous polyposis coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain. Oncogene 19, 3894–3901 (2000).
Article CAS PubMed Google Scholar
Kachel, N. et al. Structure determination and ligand interactions of the PDZ2b domain of PTP-Bas (hPTP1E): splicing-induced modulation of ligand specificity. J. Mol. Biol. 334, 143–155 (2003).
Article CAS PubMed Google Scholar
Seol, D. W. & Billiar, T. R. A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J. Biol. Chem. 274, 2072–2076 (1999).
Article CAS PubMed Google Scholar
Walma, T. et al. A closed binding pocket and global destabilization modify the binding properties of an alternatively spliced form of the second PDZ domain of PTP-BL. Structure 12, 11–20 (2004).
Article CAS PubMed Google Scholar
Tian, X. et al. DIPK2A promotes STX17- and VAMP7-mediated autophagosome–lysosome fusion by binding to VAMP7B. Autophagy 16, 797–810 (2020).
Article CAS PubMed Google Scholar
Warren, C. F. A., Wong-Brown, M. W. & Bowden, N. A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 10, 177 (2019).
Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).
Article CAS PubMed Google Scholar
Fletcher, J. I. et al. Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proc. Natl Acad. Sci. USA 105, 18081–18087 (2008).
Article CAS PubMed PubMed Central Google Scholar
Edlich, F. et al. Bcl-xL retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011).
Article CAS PubMed PubMed Central Google Scholar
Moldoveanu, T. & Czabotar, P. E. BAX, BAK, and BOK: a coming of age for the BCL-2 family effector proteins. Cold Spring Harb. Perspect. Biol. 12, a036319 (2020).
Lindenboim, L., Kringel, S., Braun, T., Borner, C. & Stein, R. Bak but not Bax is essential for Bcl-xS-induced apoptosis. Cell Death Differ. 12, 713–723 (2005).
Minn, A. J., Boise, L. H. & Thompson, C. B. Bcl-xS antagonizes the protective effects of Bcl-xL. J. Biol. Chem. 271, 6306–6312 (1996).
Article CAS PubMed Google Scholar
Plotz, M., Gillissen, B., Hossini, A. M., Daniel, P. T. & Eberle, J. Disruption of the VDAC2–Bak interaction by Bcl-xS mediates efficient induction of apoptosis in melanoma cells. Cell Death Differ. 19, 1928–1938 (2012).
Cheng, E. H., Sheiko, T. V., Fisher, J. K., Craigen, W. J. & Korsmeyer, S. J. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513–517 (2003).
Article CAS PubMed Google Scholar
Lam, S. D., Babu, M. M., Lees, J. & Orengo, C. A. Biological impact of mutually exclusive exon switching. PLoS Comput. Biol. 17, e1008708 (2021).
Article CAS PubMed PubMed Central Google Scholar
Chellaiah, A. T., McEwen, D. G., Werner, S., Xu, J. & Ornitz, D. M. Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J. Biol. Chem. 269, 11620–11627 (1994).
Article CAS PubMed Google Scholar
Ornitz, D. M. et al. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292–15297 (1996).
Comments (0)