Development of wet adhesion of honeybee arolium incorporated polygonal structure with three-phase composite interfaces

Baik S, Kim D W, Park Y, Lee T, Ho Bhang S, Pang C. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546(7658): 396–400 (2017)

Article  Google Scholar 

Xue L, Sanz B, Luo A, Turner K T, Wang X, Tan D, Zhang R, Du H, Steinhart M, Mijangos C, Guttmann M, Kappl M, Del Campo A. Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano 11(10): 9711–9719 (2017)

Article  Google Scholar 

Wang X, Yang B, Tan D, Li Q, Song B, Wu Z, Del Campo A, Kappl M, Wang Z, Gorb S N, Liu S, Xue L. Bioinspired footed soft robot with unidirectional all-terrain mobility. Mater Today 35(42–49) (2020)

Yang Y, Xu T, Bei H P, Zhao Y, Zhao X. Sculpting bio-inspired surface textures: An adhesive janus periosteum. Adv Funct Mater 31(37): 2104636 (2021)

Article  Google Scholar 

Hwang G W, Lee H J, Kim D W, Yang T H, Pang C. Soft microdenticles on artificial octopus sucker enable extraordinary adaptability and wet adhesion on diverse nonflat surfaces. Adv Sci 9(31): 2202978 (2022)

Article  Google Scholar 

Lee J, Lee B S, Baik S, Kim D, Park N J, Lee J W, Bong S K, Lee S H, Kim S N, Song J H, et al. Ultra-intimate hydrogel hybrid skin patch with asymmetric elastomeric spatula-like cylinders. Chem Eng J 444: 136581 (2022)

Article  Google Scholar 

Baik S, Lee J, Jeon E J, Park B Y, Kim D W, Song J H, Lee H J, Han S Y, Cho S W, Pang C. Diving beetle-like miniaturized plungers with reversible, rapid biofluid capturing for machine learning-based care of skin disease. Sci Adv 7(25): 5695 (2021)

Article  Google Scholar 

Xue B, Gu J, Li L, Yu W, Yin S, Qin M, Jiang Q, Wang W, Cao Y. Hydrogel tapes for fault-tolerant strong wet adhesion. Nat Commun 12(1): 7156 (2021)

Article  Google Scholar 

Baik S, Hwang G W, Jang S, Jeong S, Kim K H, Yang T, Pang C. Bioinspired microsphere-embedded adhesive architectures for an electrothermally actuating transport device of dry/wet pliable surfaces. ACS Appl Mater Inter 13(5): 6930–6940 (2021)

Article  Google Scholar 

Choi D S, Bae J W, Lee S H, Song J H, Choi S, Pang C, Kim S Y. Emotion-interactive empathetic transparent skin cushion with tailored frequency-dependent hydrogel-plasticized nonionic polyvinyl chloride interconnections. Chem Eng J 442: 136142 (2022)

Article  Google Scholar 

Min H, Baik S, Lee J, Song J H, Kim K H, Kim M S, Pang C. Enhanced biocompatibility and multidirectional wet adhesion of insect-like synergistic wrinkled pillars with microcavities. Chem Eng J 429: 132467 (2022)

Article  Google Scholar 

Lee H, Um D, Lee Y, Lim S, Kim H, Ko H. Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv Mater 28(34): 7457–7465 (2016)

Article  Google Scholar 

Liu Q, Meng F, Wang X, Yang B, Tan D, Li Q, Shi Z, Shi K, Chen W, Liu S, Lei Y, Xue L. Tree frog-inspired micropillar arrays with nanopits on the surface for enhanced adhesion under wet conditions. ACS Appl Mater Inter 12(16): 19116–19122 (2020)

Article  Google Scholar 

Zhao Y, Wu Y, Wang L, Zhang M, Chen X, Liu M, Fan J, Liu J, Zhou F, Wang Z. Bio-inspired reversible underwater adhesive. Nat Commun 8(1): 2218 (2017)

Article  Google Scholar 

Federle W, Labonte D. Dynamic biological adhesion: Mechanisms for controlling attachment during locomotion. Phil Trans R Soc B 374(1784): 20190199 (2019).

Article  Google Scholar 

Shin D, Choi W T, Lin H, Qu Z, Breedveld V, Meredith J C. Humidity-tolerant rate-dependent capillary viscous adhesion of bee-collected pollen fluids. Nat Commun 10(1): 1379 (2019)

Article  Google Scholar 

Cai S, Bhushan B. Meniscus and viscous forces during separation of hydrophilic and hydrophobic smooth/rough surfaces with symmetric and asymmetric contact angles. Philos Trans A Math Phys Eng Sci 366(1870): 1627–1647 (2008)

MathSciNet  Google Scholar 

Gu Z, Li S, Zhang F, Wang S. Understanding surface adhesion in nature: A peeling model. Adv Sci 3(7): 1500327 (2016)

Article  Google Scholar 

Chen Y, Meng J, Gu Z, Wan X, Jiang L, Wang S. Bioinspired multiscale wet adhesive surfaces: Structures and controlled adhesion. Adv Funct Mater 30(5): 1905287 (2019)

Article  Google Scholar 

Labonte D, Federle W. Rate-dependence of ‘wet’ biological adhesives and the function of the pad secretion in insects. Soft Matter 11(44): 8661–8673 (2015)

Article  Google Scholar 

Gorb S N. Smooth attachment devices in insects: Functional morphology and biomechanics. Adv in Insect Physiol 34: 81–115 (2007)

Article  Google Scholar 

Gilet T, Heepe L, Lambert P, Compère P, Gorb S N. Liquid secretion and setal compliance: The beetle’s winning combination for a robust and reversible adhesion. Curr Opin Insect Sci 30: 19–25 (2018)

Article  Google Scholar 

Stork N E, Experimental analysis of adhesion of chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J Exp Bio 88(1): 91–108 (1980)

Article  Google Scholar 

Gernay S, Federle W, Lambert P, Gilet T. Elasto-capillarity in insect fibrillar adhesion. J R Soc Interface 13(121): 20160371 (2016)

Article  Google Scholar 

Gorb S N. The design of the fly adhesive pad: Distal tenent setae are adapted to the delivery of an adhesive secretion. Proc R Soc B 265(1398): 747–752 (1998)

Article  Google Scholar 

Dirks J H, Federle W. Fluid-based adhesion in insects-principles and challenges. Soft Matter 7(23): 11047–11053 (2011)

Article  Google Scholar 

Scholz I, Baumgartner W, Federle W. Micromechanics of smooth adhesive organs in stick insects: pads are mechanically anisotropic and softer towards the adhesive surface. J Comp Physiol A 194(4): 373–384 (2008)

Article  Google Scholar 

Labonte D, Struecker M Y, Birn-Jeffery A V, Federle W. Shear-sensitive adhesion enables size-independent adhesive performance in stick insects. Proc R Soc B 286(1913): 20191327 (2019)

Article  Google Scholar 

Dirks J, Federle W. Mechanisms of fluid production in smooth adhesive pads of insects. J R Soc Interface 8(60): 952–960 (2011)

Article  Google Scholar 

Peng Z, Wang C, Chen S. The microstructure morphology on ant footpads and its effect on ant adhesion. Acta Mechanica 227(7): 2025–2037 (2016)

Article  Google Scholar 

Federle W, Riehle M, Curtis A S G, Full R J. An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Inte Comp Bio 42(6): 1100–1106 (2002)

Article  Google Scholar 

Persson B N J. Wet adhesion with application to tree frog adhesive toe pads and tires. J Phys Condens Matter 19(37): 376110 (2007)

Article  Google Scholar 

Kappl M, Kaveh F, Barnes W J P. Nanoscale friction and adhesion of tree frog toe pads. Bioinspiration and Biomimetics 11(3): 035003 (2016)

Article  Google Scholar 

Zhang L, Chen H, Guo Y, Wang Y, Jiang Y, Zhang D, Ma L, Luo J, Jiang L. Micro-nano hierarchical structure enhanced strong wet friction surface inspired by tree frogs. Adv Sci 7(20): 2001125 (2020)

Article  Google Scholar 

Li M, Shi L, Wang X. Physical mechanisms behind the wet adhesion: From amphibian toe-pad to biomimetics. Colloids Surf B 199: 111531 (2021)

Article  Google Scholar 

Xiao Z, Zhao Q, Niu Y, Zhao D. Adhesion advances: From nanomaterials to biomimetic adhesion and applications. Soft Matter 18(18): 3447–3464 (2022)

Article  Google Scholar 

Barnes W J P, Baum M, Peisker H, Gorb S N. Comparative Cryo-SEM and AFM studies of hylid and rhacophorid tree frog toe pads. J Morphol 274(12): 1384–1396 (2013)

Article  Google Scholar 

Wang M, Chen W, Zhao J, Yu L, Yan S. Hairy-layer friction reduction mechanism in the honeybee abdomen. ACS Appl Mater Inter 13(21): 24524–24531 (2021)

Article  Google Scholar 

Sample C S, Xu A K, Swartz S M, Gibson L J. Nanomechanical properties of wing membrane layers in the house cricket (Acheta domesticus Linnaeus). J Insect Physiol 74: 10–15 (2015)

Article  Google Scholar 

Bennemann M, Backhaus S, Scholz I, Park D, Mayer J, Baumgartner W. Determination of the Young’s modulus of the epicuticle of the smooth adhesive organs of carausius morosus using tensile testing. J Exp Biol 217(20): 3677–3687 (2014)

Google Scholar 

Federle W, Brainerd E L, McMahon T A, Holldobler B. Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci U S A 98(11): 6215–6220 (2001)

Article  Google Scholar 

Kendall K. Thin-film peeling-the elastic term. J Phys D: Appl Phys 8(13): 1449–1452 (1975)

Article  Google Scholar 

Thomas T, Tiwari G. Crushing behavior of honeycomb structure: A review. Int J Crashworthiness 24(5): 555–579 (2019)

Article  Google Scholar 

Dirks J, Clemente C J, Federle W. Insect tricks: Two-phasic foot pad secretion prevents slipping. J R Soc Interface 7(45): 587–593 (2010)

Article  Google Scholar 

Barr V A, Bunnell S C. Interference reflection microscopy. Current Protocols in Cell Biology 45(1): 4–23 (2009)

Article  Google Scholar 

Liu B, Sheng G, Lim S T. Meniscus force modeling and study on the fluctuation of stiction/friction force in CSS test process. IEEE Trans Magn 33(5): 3121–3123 (1997)

Article  Google Scholar 

Timoshenko S, Woinowsky-Krieger S. Theory of Plates and Shells. New York (USA): McGraw-hill, 1959.

MATH  Google Scholar 

Gennes P, Brochard-Wyart F, Quéré D, Reisinger A, Widom B. Capillarity and Wetting Phenomena: Bubbles, pearls, waves. New York (USA): Springer, 2004.

Book  MATH  Google Scholar 

Greenwood J A, Williamson J B P. Contact of nominally flat surfaces. Proc R Soc Lond A 295(1442): 300–319 (1966)

Article  Google Scholar 

De Souza E J, Brinkmann M, Mohrdieck C, Crosby A, Arzt E. Capillary forces between chemically different substrates. Langmuir 24(18): 10161–10168 (2008)

Article  Google Scholar 

Lorenz B, Oh Y R, Nam S K, Jeon S H, Persson B N J. Rubber friction on road surfaces: Experiment and theory for low sliding speeds. J Chem Phys 142(19): 194701 (2015)

Article  Google Scholar 

Xue L, Kovalev A, Eichler-Volf A, Steinhart M, Gorb S N. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads. Nat Commun 6(1): 6621 (2015)

Article 

Comments (0)

No login
gif