Photoinduced superlubricity on TiO2 surfaces

Xu J G, Kato K. Formation of tribochemical layer of ceramics sliding in water and its role for low friction. Wear 245(1–2): 61–75 (2000)

Article  Google Scholar 

Li J J, Zhang C H, Luo J B. Superlubricity behavior with phosphoric acid-water network induced by rubbing. Langmuir 27(15): 9413–9417 (2011)

Article  Google Scholar 

Deng M M, Li J J, Zhang C H, Ren J, Zhou N N, Luo J B. Investigation of running-in process in water-based lubrication aimed at achieving super-low friction. Tribol Int 102: 257–264 (2016)

Article  Google Scholar 

Li J J, Zhang C H, Ma L R, Liu Y H, Luo J B. Superlubricity achieved with mixtures of acids and glycerol. Langmuir 29(1): 271–275 (2013)

Article  Google Scholar 

Han T Y, Zhang C H, Li J J, Yuan S H, Chen X C, Zhang J Y, Luo J B. Origins of superlubricity promoted by hydrated multivalent ions. J Phys Chem Lett 11(1): 184–190 (2020)

Article  Google Scholar 

Han T Y, Zhang C H, Luo J B. Macroscale superlubricity enabled by hydrated alkali metal ions. Langmuir 34(38): 11281–11291 (2018)

Article  Google Scholar 

Li J J, Zhang C H, Deng M M, Luo J B. Investigation of the difference in liquid superlubricity between water- and oil-based lubricants. RSC Adv 5(78): 63827–63833 (2015)

Article  Google Scholar 

Li J J, Zhang C H, Deng M M, Luo J B. Superlubricity of silicone oil achieved between two surfaces by running-in with acid solution. RSC Adv 5(39): 30861–30868 (2015)

Article  Google Scholar 

Liu W R, Wang H D, Liu Y H, Li J J, Erdemir A, Luo J B. Mechanism of superlubricity conversion with polyalkylene glycol aqueous solutions. Langmuir 35(36): 11784–11790 (2019)

Article  Google Scholar 

Ge X Y, Li J J, Zhang C H, Liu Y H, Luo J B. Superlubricity and antiwear properties of in situ-formed ionic liquids at ceramic interfaces induced by tribochemical reactions. ACS Appl Mater Interfaces 11(6): 6568–6574 (2019)

Article  Google Scholar 

Ge X Y, Li J J, Zhang C H, Wang Z N, Luo J B. Superlubricity of 1-ethyl-3-methylimidazolium trifluorome-thanesulfonate ionic liquid induced by tribochemical reactions. Langmuir 34(18): 5245–5252 (2018)

Article  Google Scholar 

Wang Z L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss 176: 447–458 (2014)

Article  Google Scholar 

Zhang J J, Zheng Y B, Xu L, Wang D A. Oleic-acid enhanced triboelectric nanogenerator with high output performance and wear resistance. Nano Energy 69: 104435 (2020)

Article  Google Scholar 

De Wijn A S, Fasolino A, Filippov A E, Urbakh M. Effects of molecule anchoring and dispersion on nanoscopic friction under electrochemical control. J Phys Condens Matter 28(10): 105001 (2016)

Article  Google Scholar 

Goto K. The influence of surface induced voltage on the wear mode of stainless steel. Wear 185(1–2): 75–81 (1995)

Article  Google Scholar 

Jiang Y, Yue L L, Yan B S, Liu X, Yang X F, Tai G A, Song J. Electric control of friction on silicon studied by atomic force microscope. Nano 10(3): 1550038 (2015)

Article  Google Scholar 

Liu C X, Friedman O, Meng Y G, Tian Y, Golan Y. CuS nanoparticle additives for enhanced ester lubricant performance. ACS Appl Nano Mater 1(12): 7060–7065 (2018)

Article  Google Scholar 

Strelcov E, Kumar R, Bocharova V, Sumpter B G, Tselev A, Kalinin S V. Nanoscale lubrication of ionic surfaces controlled via a strong electric field. Sci Rep 5: 8049 (2015)

Article  Google Scholar 

Tung S C, Wang S S. Friction reduction from electrochemically deposited films. Tribol Trans 34(1): 23–34 (1991)

Article  Google Scholar 

Zeng Y M, He F, Wang Q, Yan X H, Xie G X. Friction and wear behaviors of molybdenum disulfide nanosheets under normal electric field. Appl Surf Sci 455: 527–532 (2018)

Article  Google Scholar 

Hase A L, Mishina H. Magnetization of friction surfaces and wear particles by tribological processes. Wear 268(1–2): 185–189 (2010)

Article  Google Scholar 

Zaidi H, Senouci A. Influence of magnetic field on surface modification and the friction behavior of sliding couple aluminium/XC 48 steel. Surf Coat Tech 120–121: 653–658 (1999)

Article  Google Scholar 

Wang Y X, Wang H L, Yan F Y. Effects of UV irradiation on tribological properties of nano-TiO2 thin films. Surf Interface Anal 41(5): 399–404 (2009)

Article  Google Scholar 

Liu D Q, Broer D J. Light controlled friction at a liquid crystal polymer coating with switchable patterning. Soft Matter 10(40): 7952–7958 (2014)

Article  Google Scholar 

Sasaki M, Xu Y B, Goto M. Control of friction force by light observed by friction force microscopy in a vacuum. Appl Phys Express 10(1): 015201 (2017)

Article  Google Scholar 

Perotti B L, Cammarata A, Cemin F, de Mello S R S, Leidens L M, Echeverrigaray F G, Minea T, Alvarez F, Michels A F, Polcar T, et al. Phototribology: Control of friction by light. ACS Appl Mater Interfaces 13(36): 43746–43754 (2021)

Article  Google Scholar 

Tang S X, Xue D D, Guo J Q, Ma L R, Tian Y, Luo J B. Macroscale light-controlled lubrication enabled by introducing diarylethene molecules in a nanoconfinement. Langmuir 36(21): 5820–5828 (2020)

Article  Google Scholar 

Tang S X, Li S Y, Ma L R, Tian Y. Photorheological fluids of azobenzene polymers for lubrication regulation. Friction 10(7): 1078–1090 (2022)

Article  Google Scholar 

Ma P S, Liu Y, Sang X, Tan J J, Ye S J, Ma L R, Tian Y. Homogeneous interfacial water structure favors realizing a low-friction coefficient state. J Colloid Interf Sci 626: 324–333 (2022)

Article  Google Scholar 

Evoy S, Olkhovets A, Sekaric L, Parpia J M, Craighead H G, Carr D W. Temperature-dependent internal friction in silicon nanoelectromechanical systems. Appl Phys Lett 77(15): 2397–2399 (2000)

Article  Google Scholar 

Schirmeisen A, Jansen L, Hölscher H, Fuchs H. Temperature dependence of point contact friction on silicon. Appl Phys Lett 88(12): 123108 (2006)

Article  Google Scholar 

Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem Rev 95(3): 735–758 (1995)

Article  Google Scholar 

Fujishima A, Zhang X T, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12): 515–582 (2008)

Article  Google Scholar 

Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. J Photoch Photobio C 13(3): 169–189 (2012)

Article  Google Scholar 

Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K. Studies of surface wettability conversion on TiO2 single-crystal surfaces. J Phys Chem B 103(12): 2188–2194 (1999)

Article  Google Scholar 

Miyauchi M, Kieda N, Hishita S, Mitsuhashi T, Nakajima A, Watanabe T, Hashimoto K. Reversible wettability control of TiO2 surface by light irradiation. Surf Sci 511(1–3): 401–407 (2002)

Article  Google Scholar 

Hu Y Z, Gutmann R J, Chow T P. Silicon nitride chemical mechanical polishing mechanisms. J Electrochem Soc 145(11): 3919–3925 (1998)

Article  Google Scholar 

Xiao C, Li J J, Chen L, Zhang C H, Zhou N N, Qian L M, Luo J B. Speed dependence of liquid superlubricity stability with H3PO4 solution. RSC Adv 7(78): 49337–49343 (2017)

Article  Google Scholar 

Dowson D, Higginson G R, Whitaker A V. Elastohydrodynamic lubrication: A survey of isothermal solutions. J Mech Eng Sci 4(2): 121–126 (1962)

Article  Google Scholar 

Luo J B, Liu M, Ma L R. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook. Nano Energy 86: 106092 (2021)

Article  Google Scholar 

Comments (0)

No login
gif