A review of recent advances in the effects of surface and interface properties on marine propellers

Carlton J S. Marine Propellers and Propulsion, 3rd edn. Oxford (UK): Butterworth-Heinemann, 2012.

Google Scholar 

Stark C, Shi W C, Atlar M. A numerical investigation into the influence of bio-inspired leading-edge tubercles on the hydrodynamic performance of a benchmark ducted propeller. Ocean Eng 237: 109593 (2021)

Article  Google Scholar 

Qin D H, Pan G, Huang Q G, Zhang Z D, Ke J J. Numerical investigation of different tip clearances effect on the hydrodynamic performance of pumpjet propulsor. Int J Comput Meth 15(5): 1850037 (2018)

Article  MathSciNet  MATH  Google Scholar 

Koronowicz T, Krzemianowski Z, Tuszkowska T, Szantyr J A. A complete design of tandem co-rotating propellers using the new computer system. Pol Marit Res 17(4): 17–25 (2010)

Google Scholar 

Grassi D, Brizzolara S, Viviani M, Savio L, Caviglia S. Design and analysis of counter-rotating propellers-comparison of numerical and experimental results. J Hydrodyn 22(5): Supplement 1 570–576 (2010)

Google Scholar 

Cao Q M, Hong F W, Tang D H, Hu F L, Lu L Z. Prediction of loading distribution and hydrodynamic measurements for propeller blades in a rim driven thruster. J Hydrodyn 24(1): 50–57 (2012)

Article  Google Scholar 

Lynes M. International energy outlook 2016: Transportation sector. In: Report No. DOE/EIA-0484, Washingtion, USA, 2016: DOE/EIA-0484.

Google Scholar 

UK-IMO. Third IMO GHG study 2014. IMO, 2015.

McWhinnie L, Smallshaw L, Serra-Sogas N, O’Hara P D, Canessa R. The grand challenges in researching marine noise pollution from vessels: A horizon scan for 2017. Front Mar Sci 4: 31 (2017)

Article  Google Scholar 

Wilcock W S D, Stafford K M, Andrew R K, Odom R I. Sounds in the ocean at 1–100 Hz. Annu Rev Mar Sci 6: 117–140 (2014)

Article  Google Scholar 

Sandhya M, Rajarajeswari K, Seetaramaiah P. Detecting inception of hydrodynamic cavitation noise of ships using quadratic phase coupling index as an indicator. Defence Sci J 65(1): 53–62 (2015)

Article  Google Scholar 

Bagheri M R, Mehdigholi H, Seif M S, Yaakob O. An experimental and numerical prediction of marine propeller noise under cavitating and non-cavitating conditions. Brodogradnja 66(2): 29–45 (2015)

Google Scholar 

Yao H L, Liu Y, Zhang H X, Zhang Q. Comparative study on hydrodynamic performance and induced pressure of new canard tandem propellers and conventional propellers. Ocean Eng 221: 108566 (2021)

Article  Google Scholar 

Belhenniche S E, Aounallah M, Omar I, Çelik F. Effect of geometric configurations on hydrodynamic performance assessment of a marine propeller. Brodogradnja 67(4): 31–48 (2016)

Article  Google Scholar 

Lee C S, Choi Y D, Ahn B K, Shin M S, Jang H G. Performance optimization of marine propellers. Int J Nav Archit Ocean Eng 2(4): 211–216 (2010)

Article  Google Scholar 

Razaghian A H, Ebrahimi A, Zahedi F, Javanmardi M R, Seif M S. Investigating the effect of geometric parameters on hydrodynamic and hydro-acoustic performances of submerged propellers. Appl Ocean Res 114: 102773 (2021)

Article  Google Scholar 

Ghassemi H, Gorji M, Mohammadi J. Effect of tip rake angle on the hydrodynamic characteristics and sound pressure level around the marine propeller. Ships Offshore Struc 13(7): 759–768 (2018)

Article  Google Scholar 

Gao H T, Zhu W C, Liu Y T, Yan Y Y. Effect of various winglets on the performance of marine propeller. Appl Ocean Res 86: 246–256 (2019)

Article  Google Scholar 

Zhu W C, Gao H T. A numerical investigation of a winglet-propeller using an LES model. J Mar Sci Eng 7(10): 333 (2019)

Article  Google Scholar 

Kang J G, Kim M C, Kim H U, Shin I R. Study on propulsion performance by varying rake distribution at the propeller tip. J Mar Sci Eng 7(11): 386 (2019)

Article  Google Scholar 

Hu J, Zhang W P, Wang C, Sun S L, Guo C Y. Impact of skew on propeller tip vortex cavitation. Ocean Eng 220: 108479 (2021)

Article  Google Scholar 

Ji B, Luo X W, Wu Y L. Unsteady cavitation characteristics and alleviation of pressure fluctuations around marine propellers with different skew angles. J Mech Sci Technol 28(4): 1339–1348 (2014)

Article  Google Scholar 

Zhu W C, Gao H T. Hydrodynamic characteristics of bio-inspired marine propeller with various blade sections. Ships Offshore Struc 16(2): 156–171 (2021)

Article  Google Scholar 

Cheng H Y, Ji B, Long X P, Huai W X, Farhat M. A review of cavitation in tip-leakage flow and its control. J Hydrodyn 33(2): 226–242 (2021)

Article  Google Scholar 

Liu Y B, Tan L. Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy. Renew Energy 148: 907–922 (2020)

Article  Google Scholar 

Liu Y B, Tan L. Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy. Energy 155: 448–461 (2018)

Article  Google Scholar 

Liu Y B, Tan L. Method of T shape tip on energy improvement of a hydrofoil with tip clearance in tidal energy. Renew Energy 149: 42–54 (2020)

Article  Google Scholar 

Cheng H Y, Long X P, Ji B, Peng X X, Farhat M. Suppressing tip-leakage vortex cavitation by overhanging grooves. Exp Fluids 61(7): 159 (2020)

Article  Google Scholar 

Sun Y, Liu W, Li T Y. Numerical investigation on noise reduction mechanism of serrated trailing edge installed on a pump-jet duct. Ocean Eng 191: 106489 (2019)

Article  Google Scholar 

Qin D H, Pan G, Lee S, Huang Q G, Shi Y. Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor. Ocean Eng 188: 106228 (2019)

Article  Google Scholar 

Jin H C, Tian L M, Bing W, Zhao J, Ren L Q. Bioinspired marine antifouling coatings: Status, prospects, and future. Prog Mater Sci 124: 100889 (2022)

Article  Google Scholar 

Maan A M C, Hofman A H, Vos W M, Kamperman M. Recent developments and practical feasibility of polymer-based antifouling coatings. Adv Funct Mater 30(32): 2000936 (2020)

Article  Google Scholar 

Lee C, Choi C H, Kim C J. Superhydrophobic drag reduction in laminar flows: A critical review. Exp Fluids 57(12): 176 (2016)

Article  Google Scholar 

Park H, Choi C H, Kim C J. Superhydrophobic drag reduction in turbulent flows: A critical review. Exp Fluids 62(11): 229 (2021)

Article  Google Scholar 

Feng X M, Sun P F, Tian G Z. Recent developments of superhydrophobic surfaces (SHS) for underwater drag reduction opportunities and challenges. Adv Mater Interfaces 9(2): 2101616 (2022)

Article  Google Scholar 

Zaresharif M, Ravelet F, Kinahan D J, Delaure Y M C. Cavitation control using passive flow control techniques. Phys Fluids 33(12): 121301 (2021)

Article  Google Scholar 

Luo J B, Liu M, Ma L R. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook. Nano Energy 86: 106092 (2021)

Article  Google Scholar 

Wang H D, Liu Y H. Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction 8(6): 1007–1024 (2020)

Article  Google Scholar 

Meng Y G, Xu J, Jin Z M, Prakash B, Hu Y Z. A review of recent advances in tribology. Friction 8(2): 221–300 (2020)

Article  Google Scholar 

Chen X C, Li J J. Superlubricity of carbon nanostructures. Carbon 158: 1–23 (2020)

Article  Google Scholar 

Ge X Y, Li J J, Luo J B. Macroscale superlubricity achieved with various liquid molecules: A review. Front Mech Eng 5: 2 (2019)

Article  Google Scholar 

Song Y M, Qu C Y, Ma M, Zheng Q S. Structural superlubricity based on crystalline materials. Small 16(15): 1903018 (2020)

Article  Google Scholar 

Chen X C, Yin X, Qi W, Zhang C H, Choi J, Wu S D, Wang R, Luo J B. Atomic-scale insights into the interfacial instability of superlubricity in hydrogenated amorphous carbon films. Sci Adv 6(13): eaay1272 (2020)

Article  Google Scholar 

Liu S W, Wang H P, Xu Q, Ma T B, Yu G, Zhang C H, Geng D C, Yu Z W, Zhang S G, Wang W Z, et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat Commun 8: 14029 (2017)

Article  Google Scholar 

Chen X C, Zhang C H, Kato T, Yang X A, Wu S D, Wang R, Nosaka M, Luo J B. Evolution of tribo-induced interfacial nanostructures governing superlubricity in a-C:H and a-C:H:Si films. Nat Commun 8(1): 1675 (2017)

Article  Google Scholar 

Erdemir A. Genesis of superlow friction and wear in diamondlike carbon films. Tribol Int 37(11–12): 1005–1012 (2004)

Article  Google Scholar 

Martin J M, Donnet C, Le Mogne T, Epicier T. Superlubricity of molybdenum disulphide. Phys Rev B 48(14): 10583–10586 (1993)

Article  Google Scholar 

Hirano M, Shinjo K. Atomistic locking and friction. Phys Rev B 41(17): 11837–11851 (1990)

Article  Google Scholar 

Han T Y, Zhang C H, Li J J, Yuan S H, Chen X C, Zhang J Y, Luo J B. Origins of superlubricity promoted by hydrated multivalent ions. J Phys Chem Lett 11(1): 184–190 (2020)

Article  Google Scholar 

Han T Y, Zhang C H, Luo J B. Macroscale superlubricity enabled by hydrated alkali metal ions. Langmuir 34(38): 11281–11291 (2018)

Article  Google Scholar 

Li J J, Zhang C H, Ma L R, Liu Y H, Luo J B. Superlubricity achieved with mixtures of acids and glycerol. Langmuir 29(1): 271–275 (2013)

Article  Google Scholar 

Li J J, Zhang C H, Luo J B. Superlubricity achieved with mixtures of polyhydroxy alcohols and acids. Langmuir 29(17): 5239–5245 (2013)

Article  Google Scholar 

Li J J, Liu Y H, Luo J B, Liu P X, Zhang C H. Excellent lubricating behavior of Brasenia schreberi mucilage. Langmuir 28(20): 7797–7802 (2012)

Article  Google Scholar 

Chen M, Kato K, Adachi K. Friction and wear of self-mated SiC and Si3N4 sliding in water. Wear 250(1–12): 246–255 (2001)

Comments (0)

No login
gif