Grünewald TG, Alonso M, Avnet S, Banito A, Burdach S, Cidre-Aranaz F, et al. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med. 2020;12:e11131.
Article PubMed PubMed Central Google Scholar
Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, et al. Ewing sarcoma. Nat Rev Dis Prim. 2018;4:5.
Balamuth NJ, Womer RB. Ewing’s sarcoma. Lancet Oncol. 2010;11:184–92.
Article CAS PubMed Google Scholar
Riggi N, Suvà ML, Stamenkovic I. Ewing’s Sarcoma. N. Engl J Med. 2021;384:154–64.
Article CAS PubMed Google Scholar
Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med. 2009;15:750–6.
Article CAS PubMed PubMed Central Google Scholar
Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suvà ML, et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell. 2014;26:668–81.
Article CAS PubMed PubMed Central Google Scholar
Kovar H. Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma. 2011;2011:837474.
Cidre-Aranaz F, Alonso J. EWS/FLI1 target genes and therapeutic opportunities in Ewing sarcoma. Front Oncol. 2015;5:162.
Article PubMed PubMed Central Google Scholar
Fidaleo M, De Paola E, Paronetto MP. The RNA helicase A in malignant transformation. Oncotarget. 2016;7:28711–23.
Article PubMed PubMed Central Google Scholar
Cristini A, Groh M, Kristiansen MS, Gromak N. RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage. Cell Rep. 2018;23:1891–905.
Article CAS PubMed PubMed Central Google Scholar
Lee T, Paquet M, Larsson O, Pelletier J. Tumor cell survival dependence on the DHX9 DExH-box helicase. Oncogene. 2016;35:5093–105.
Article CAS PubMed PubMed Central Google Scholar
Chakraborty P, Huang JTJ, Hiom K. DHX9 helicase promotes R-loop formation in cells with impaired RNA splicing. Nat Commun. 2018;9:4346.
Article PubMed PubMed Central Google Scholar
Gulliver C, Hoffmann R, Baillie GS. The enigmatic helicase DHX9 and its association with the hallmarks of cancer. Future Sci OA. 2020;7:FSO650.
Article PubMed PubMed Central Google Scholar
Fidaleo M, Svetoni F, Volpe E, Miñana B, Caporossi D, Paronetto MP. Genotoxic stress inhibits Ewing sarcoma cell growth by modulating alternative pre-mRNA processing of the RNA helicase DHX9. Oncotarget. 2015;6:31740–57.
Article PubMed PubMed Central Google Scholar
Palombo R, Paronetto MP. pncCCND1_B Engages an Inhibitory Protein Network to Downregulate CCND1 Expression upon DNA Damage. Cancers (Basel) 2022; 14.
Palombo R, Verdile V, Paronetto MP. Poison-exon inclusion in DHX9 reduces its expression and sensitizes ewing sarcoma cells to chemotherapeutic Treatment. Cells. 2020;9:328.
Article CAS PubMed PubMed Central Google Scholar
Chellini L, Pieraccioli M, Sette C, Paronetto MP. The DNA/RNA helicase DHX9 contributes to the transcriptional program of the androgen receptor in prostate cancer. J Exp Clin Cancer Res. 2022;41:178.
Article CAS PubMed PubMed Central Google Scholar
Liu S, He L, Wu J, Wu X, Xie L, Dai W, et al. DHX9 contributes to the malignant phenotypes of colorectal cancer via activating NF-κB signaling pathway. Cell Mol Life Sci. 2021;78:8261–81.
Article CAS PubMed Google Scholar
Cao S, Sun R, Wang W, Meng X, Zhang Y, Zhang N, et al. RNA helicase DHX9 may be a therapeutic target in lung cancer and inhibited by enoxacin. Am J Transl Res. 2017;9:674–82.
CAS PubMed PubMed Central Google Scholar
Erkizan HV, Schneider JA, Sajwan K, Graham GT, Griffin B, Chasovskikh S et al. RNA helicase A activity is inhibited by oncogenic transcription factor EWS-FLI1. Nucleic Acids Res. 2015.
Palombo R, Frisone P, Fidaleo M, Mercatelli N, Sette C, Paronetto MP. The promoter-associated noncoding RNA. Cancer Res. 2019;79:3570–82.
Article CAS PubMed Google Scholar
Kollareddy M, Sherrard A, Park JH, Szemes M, Gallacher K, Melegh Z, et al. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis. Cancer Lett. 2017;403:74–85.
Article CAS PubMed PubMed Central Google Scholar
Spriano F, Chung EYL, Gaudio E, Tarantelli C, Cascione L, Napoli S, et al. The ETS inhibitors YK-4-279 and TK-216 are novel antilymphoma agents. Clin Cancer Res. 2019;25:5167–76.
Article CAS PubMed Google Scholar
Xue J, Li S, Shi P, Chen M, Yu S, Hong S, et al. The ETS inhibitor YK-4-279 suppresses thyroid cancer progression independently. Front Oncol. 2021;11:649323.
Article CAS PubMed PubMed Central Google Scholar
Rahim S, Minas T, Hong SH, Justvig S, Çelik H, Kont YS, et al. A small molecule inhibitor of ETV1, YK-4-279, prevents prostate cancer growth and metastasis in a mouse xenograft model. PLoS ONE. 2014;9:e114260.
Article PubMed PubMed Central Google Scholar
Povedano JM, Li V, Lake KE, Bai X, Rallabandi R, Kim J, et al. TK216 targets microtubules in Ewing sarcoma cells. Cell Chem Biol. 2022;29:1325–32.e1324
Article CAS PubMed PubMed Central Google Scholar
Ludwig JA, Meyers PA, Dirksen U. Ewing’s sarcoma. N. Engl J Med. 2021;384:1476.
Yan M, Yang X, Wang H, Shao Q. The critical role of histone lysine demethylase KDM2B in cancer. Am J Transl Res. 2018;10:2222–33.
CAS PubMed PubMed Central Google Scholar
Vacík T, Lađinović D, Raška I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus. 2018;9:431–41.
Article PubMed PubMed Central Google Scholar
He S, Huang Q, Hu J, Li L, Xiao Y, Yu H, et al. EWS-FLI1-mediated tenascin-C expression promotes tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation in Ewing sarcoma. Br J Cancer. 2019;121:922–33.
Article CAS PubMed PubMed Central Google Scholar
Bierbaumer L, Katschnig AM, Radic-Sarikas B, Kauer MO, Petro JA, Högler S, et al. YAP/TAZ inhibition reduces metastatic potential of Ewing sarcoma cells. Oncogenesis. 2021;10:2.
Article CAS PubMed PubMed Central Google Scholar
Rodríguez-Núñez P, Romero-Pérez L, Amaral AT, Puerto-Camacho P, Jordán C, Marcilla D, et al. Hippo pathway effectors YAP1/TAZ induce an EWS-FLI1-opposing gene signature and associate with disease progression in Ewing sarcoma. J Pathol. 2020;250:374–86.
Katschnig AM, Kauer MO, Schwentner R, Tomazou EM, Mutz CN, Linder M, et al. EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma. Oncogene. 2017;36:5995–6005.
Article CAS PubMed PubMed Central Google Scholar
Truong DD, Lamhamedi-Cherradi SE, Ludwig JA. Targeting the IGF/PI3K/mTOR pathway and AXL/YAP1/TAZ pathways in primary bone cancer. J Bone Oncol. 2022;33:100419.
Article PubMed PubMed Central Google Scholar
Padeken J, Methot SP, Gasser SM. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol. 2022;23:623–40.
Article CAS PubMed PubMed Central Google Scholar
Toretsky JA, Erkizan V, Levenson A, Abaan OD, Parvin JD, Cripe TP, et al. Oncoprotein EWS-FLI1 activity is enhanced by RNA helicase A. Cancer Res. 2006;66:5574–81.
Article CAS PubMed Google Scholar
Filion C, Labelle Y. The oncogenic fusion protein EWS/NOR-1 induces transformation of CFK2 chondrogenic cells. Exp Cell Res. 2004;297:585–92.
Article CAS PubMed Google Scholar
Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge
Comments (0)