Post M, Silver R, Singh M. Rotator cuff tear: diagnosis and treatment. Clin Orthop. 1983;173:78–91.
Freedman BR, Mooney DJ, Weber E. Advances toward transformative therapies for tendon diseases. Sci Translational Med. 2022;14:eabl8814. https://doi.org/10.1126/scitranslmed.abl8814.
Saveh-Shemshaki N, Nair LS, Laurencin CT. Nanofiber-based matrices for rotator cuff regenerative engineering. Acta Biomaterialia. 2019;94:64–81. https://doi.org/10.1016/j.actbio.2019.05.041.
Laron D, Samagh SP, Liu X, Kim HT, Feeley BT. Muscle degeneration in rotator cuff tears. J Shoulder Elbow Surg. 2012;21:164–74. https://doi.org/10.1016/j.jse.2011.09.027.
Lemos DR, Babaeijandaghi F, Low M, Chang C-K, Lee ST, Fiore D, et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med. 2015;21:786–94. https://doi.org/10.1038/nm.3869.
Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty infiltration of disrupted rotator cuff muscles. Rev Rhum Engl Ed. 1995;62(6):415–22.
Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;(304):78–83.
Longo UG, Mazzola A, Magrì F, Catapano S, De Salvatore S, Carotti S, et al. Histological, radiological and clinical analysis of the supraspinatus tendon and muscle in rotator cuff tears. BMC Musculoskelet Disord. 2023;24:127. https://doi.org/10.1186/s12891-023-06237-9.
Sevivas N, Serra SC, Portugal R, Teixeira FG, Carvalho MM, Silva N, et al. Animal model for chronic massive rotator cuff tear: behavioural and histologic analysis. Knee Surg Sports Traumatol Arthrosc. 2015;23:608–18. https://doi.org/10.1007/s00167-014-3441-3.
Kim HM, Galatz LM, Lim C, Havlioglu N, Thomopoulos S. The effect of tear size and nerve injury on rotator cuff muscle fatty degeneration in a rodent animal model. J Shoulder Elbow Surg.2012;21(7):847–58. https://doi.org/10.1016/j.jse.2011.05.004.
Meyer GA, Gibbons MC, Sato E, Lane JG, Ward SR, Engler AJ. Epimuscular fat in the human rotator cuff is a novel beige depot. Stem Cells Transl Med. 2015;4:764–74. https://doi.org/10.5966/sctm.2014-0287.
Agha O, Diaz A, Davies M, Kim HT, Liu X, Feeley BT. Rotator cuff tear degeneration and the role of fibro-adipogenic progenitors. Ann NY Acad Sci. 2021;1490:13–28. https://doi.org/10.1111/nyas.14437.
Singh A, Gibbons MC, Anakwenze OA, Cheng T, Azimi H, Schenk S, Ward SR. Histological quantification of chronic human rotator cuff muscle degeneration. J Shoulder Elbow Surg.2016;25(10): E336–7. https://doi.org/10.1016/j.jse.2016.07.070.
Arrighi N, Moratal C, Clément N, Giorgetti-Peraldi S, Peraldi P, Loubat A, et al. Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle. Cell Death Dis. 2015;6:e1733–e1733. https://doi.org/10.1038/cddis.2015.79.
Chavez JA, Summers SA. Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms. Biochim Biophys Acta. 2010;1801:252–65. https://doi.org/10.1016/j.bbalip.2009.09.015.
Vishvanath L, Gupta RK. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J Clin Invest. 2019;129:4022–31. https://doi.org/10.1172/JCI129191.
Wang Y, Shyh-Chang N. Sphingolipids mediate lipotoxicity in muscular dystrophies. Life Medicine. 2022;1:273–5. https://doi.org/10.1093/lifemedi/lnac015.
Laurencin CT, Khan Y, Regenerative engineering. Sci Transl Med. 2012;4:160ed9. https://doi.org/10.1126/scitranslmed.3004467.
Shemshaki NS, Kan HM, Barajaa M, Otsuka T, Lebaschi M, Mishra N, Nair LS, Laurencin CT. Muscle degeneration in chronic massive rotator cuff tears of the shoulder: addressing the real problem using a graphene matrix. Proc Natl Acad Sci. 2022;119(33):e2208106119. https://doi.org/10.1073/pnas.2208106119.
Monga I, Kaur K, Dhanda SK. Revisiting hematopoiesis: applications of the bulk and single-cell transcriptomics dissecting transcriptional heterogeneity in hematopoietic stem cells. Brief Funct Genomics. 2022;21(3):159–76. https://doi.org/10.1093/bfgp/elac002.
Boldt C. What is tumor-infiltrating lymphocyte (TIL) therapy? MD Anderson Cancer Center; Cancerwise. 2021(4). https://www.mdanderson.org/cancerwise/what-is-tumor-infiltrating-lymphocyte-til-therapy--6-things-to-know.h00-159460056.html.
Perrin J, Capitao M, Mougin-Degraef M, Guérard F, Faivre-Chauvet A, Rbah-Vidal L, Gaschet J, Guilloux Y, Kraeber-Bodere F, Cherel M, Barbet J. Cell tracking in cancer immunotherapy. Front Med (Lausanne). 2020;7:34. https://doi.org/10.3389/fmed.2020.00034.
Hartwell MJ, Harold RE, Sweeney PT, Seitz AL, Marra G, Saltzman MD. Imbalance in axial-plane rotator cuff fatty infiltration in posteriorly worn glenoids in primary glenohumeral osteoarthritis: An MRI-based Study. Clin Orthop Relat Res. 2021;479(11):2471–9. https://doi.org/10.1097/CORR.0000000000001798.
Werthel JD, Boux de Casson F, Walch G, Gaudin, P, Moroder, P, Sanchez-Sotelo, J, Chaoui, J, Burdin, V. Three-dimensional muscle loss assessment: a novel computed tomography-based quantitative method to evaluate rotator cuff muscle fatty infiltration. J Shoulder Elbow Surg. 2022;31(1):165–74. https://doi.org/10.1016/j.jse.2021.07.029.
Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elbow Surg. 1999;8:599–605. https://doi.org/10.1016/S1058-2746(99)90097-6.
Xu J, Liu B, Qiao Y, Ye Z, Su W, Zhao J. The 3-dimensional fatty infiltration in the overall supraspinatus can be predicted by localized sectional accumulation units: a cross-sectional study in patients with atraumatic small-to-massive rotator cuff tears. JBJS. 2023;105:380. https://doi.org/10.2106/JBJS.22.00767.
Davis DL, Kesler T, Gilotra MN, Almardawi R, Hasan SA, Gullapalli RP, et al. Quantification of shoulder muscle intramuscular fatty infiltration on T1-weighted MR images: a viable alternative to the Goutallier classification system. Skeletal Radiol. 2019;48:535–41. https://doi.org/10.1007/s00256-018-3057-7.
Addison O, Marcus RL, Lastayo PC, Ryan AS. Intermuscular fat: a review of the consequences and causes. Int J Endocrinol. 2014;2014:309570. https://doi.org/10.1155/2014/309570.
Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol. 2010;12:143–52. https://doi.org/10.1038/ncb2014.
Joe AWB, Yi L, Natarajan A, Le Grand F, So L, Wang J, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol. 2010;12:153–63. https://doi.org/10.1038/ncb2015.
Contreras O, Rossi FMV, Theret M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors—time for new definitions. Skeletal Muscle. 2021;11:16. https://doi.org/10.1186/s13395-021-00265-6.
Hansen JB, Kristiansen K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem J. 2006;398:153–68. https://doi.org/10.1042/BJ20060402.
Stumm J, Vallecillo-García P, Vom Hofe-Schneider S, Ollitrault D, Schrewe H, Economides AN, et al. Odd skipped-related 1 (Osr1) identifies muscle-interstitial fibro-adipogenic progenitors (FAPs) activated by acute injury. Stem Cell Research. 2018;32:8–16. https://doi.org/10.1016/j.scr.2018.08.010.
Liu X, Ning AY, Chang NC, Kim H, Nissenson R, Wang L, et al. Investigating the cellular origin of rotator cuff muscle fatty infiltration and fibrosis after injury. Muscles Ligaments Tendons J. 2016;6:6–15. https://doi.org/10.11138/mltj/2016.6.1.006.
Shirasawa H, Matsumura N, Shimoda M, Oki S, Yoda M, Tohmonda T, et al. Inhibition of PDGFR signaling prevents muscular fatty infiltration after rotator cuff tear in mice. Sci Rep. 2017;7:41552. https://doi.org/10.1038/srep41552.
Davies MR, Liu X, Lee L, Laron D, Ning AY, Kim HT, et al. TGF-β small molecule inhibitor SB431542 reduces rotator cuff muscle fibrosis and fatty infiltration by promoting fibro/adipogenic progenitor apoptosis. PLoS ONE. 2016;11:e0155486. https://doi.org/10.1371/journal.pone.0155486.
Lee C, Agha O, Liu M, Davies M, Bertoy L, Kim HT, et al. Rotator cuff fibro-adipogenic progenitors demonstrate highest concentration, proliferative capacity, and adipogenic potential across muscle groups. J Orthop Res. 2020;38:1113–21. https://doi.org/10.1002/jor.24550.
Han X. Lipidomics: developments and applications. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:2663. https://doi.org/10.1016/j.jchromb.2009.07.007.
Flück M, Ruoss S, Möhl CB, Valdivieso P, Benn MC, von Rechenberg B, et al. Genomic and lipidomic actions of nandrolone on detached rotator cuff muscle in sheep. J Steroid Biochem Mol Biol. 2017;165:382–95. https://doi.org/10.1016/j.jsbmb.2016.08.005.
Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol.2015;208(5):501–12. https://doi.org/10.1083/jcb.201409063.
Tamilarasan KP, Temmel H, Das SK, Al Zoughbi W, Schauer S, Vesely PW, et al. Skeletal muscle damage and impaired regeneration due to LPL-mediated lipotoxicity. Cell Death Dis. 2012;3:e354–e354. https://doi.org/10.1038/cddis.2012.91.
Reggio A, De Paolis F, Bousselmi S, Cicciarelli F, Bernardini S, Rainer A, et al. A 3D adipogenesis platform to study the fate of fibro/adipogenic progenitors in muscular dystrophies. Dis Model Mech. 2023;16:dmm049915. https://doi.org/10.1242/dmm.049915.
Liu X, Liu M, Lee L, Davies M, Wang Z, Kim H, et al. Trichostatin A regulates fibro/adipogenic progenitor adipogenesis epigenetically and reduces rotator cuff muscle fatty infiltration. J Orthop Res. 2021;39:1452–62. https://doi.org/10.1002/jor.24865.
Iio R, Manaka T, Takada N, Orita K, Nakazawa K, Hirakawa Y, et al. Parathyroid hormone inhibits fatty infiltration and muscle atrophy after rotator cuff tear by browning of fibroadipogenic progenitors in a rodent model. Am J Sports Med. 2023;51:3251–60. https://doi.org/10.1177/03635465231190389.
Lee C, Liu M, Agha O, Kim HT, Liu X, Feeley BT. Beige fibro-adipogenic progenitor transplantation reduces muscle degeneration and improves function in a mouse model of delayed repair of rotator cuff tears. J Shoulder Elbow Surg. 2020;29:719–27. https://doi.org/10.1016/j.jse.2019.09.021.
Lee C, Liu M, Agha O, Kim HT, Feeley BT, Liu X. Beige FAP transplantation improves muscle quality and shoulder function after massive rotator cuff tears. J Orthop Res. 2020;38:1159–66. https://doi.org/10.1002/jor.24558.
Tashjian RZ, Kim SK, Roche MD, Jones KB, Teerlink CC. Genetic variants associated with rotator cuff tearing utilizing multiple population-based genetic resources. J Shoulder Elbow Surg. 2021;30:520–31. https://doi.org/10.1016/j.jse.2020.06.036.
Gladstone JN, Bishop JY, Lo IKY, Flatow EL. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med. 2007;35:719–28. https://doi.org/10.1177/0363546506297539.
Washington KS, Shemshaki NS, Laurencin CT. The role of nanomaterials and biological agents on rotator cuff regeneration. Regen Eng Transl Med. 2021;7:440–9. https://doi.org/10.1007/s40883-020-00171-1.
Comments (0)