Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10:200223. https://doi.org/10.1098/rsob.200223.
Article CAS PubMed PubMed Central Google Scholar
Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes.n.d. (accessed May 14, 2024).
Goyal R, Singhal M, Jialal I. Type 2 diabetes, in: StatPearls, StatPearls Publishing, Treasure Island (FL), 2024. http://www.ncbi.nlm.nih.gov/books/NBK513253/ (accessed May 9, 2024).
Diabetes Mellitus (DM) - Endocrine and metabolic disorders, Merck Man. Prof. Ed. (n.d.). https://www.merckmanuals.com/professional/endocrine-and-metabolic-disorders/diabetes-mellitus-and-disorders-of-carbohydrate-metabolism/diabetes-mellitus-dm (accessed May 9, 2024).
Holl J, Kowalewski C, Zimek Z, Fiedor P, Kaminski A, Oldak T, Moniuszko M, Eljaszewicz A. Chronic diabetic wounds and their treatment with skin substitutes. Cells. 2021;10:655. https://doi.org/10.3390/cells10030655.
Article CAS PubMed PubMed Central Google Scholar
Christman AL, Selvin E, Margolis DJ, Lazarus GS, Garza LA. Hemoglobin A1c is a predictor of healing rate in diabetic wounds. J Invest Dermatol. 2011;131:2121–7. https://doi.org/10.1038/jid.2011.176.
Article CAS PubMed PubMed Central Google Scholar
Okonkwo UA, DiPietro LA. Diabetes and wound angiogenesis. Int J Mol Sci. 2017;18:1419. https://doi.org/10.3390/ijms18071419.
Article CAS PubMed PubMed Central Google Scholar
Almadani YH, Vorstenbosch J, Davison PG, Murphy AM. Wound healing: a comprehensive review. Semin Plast Surg. 2021;35:141–4. https://doi.org/10.1055/s-0041-1731791.
Article PubMed PubMed Central Google Scholar
McCarty SM, Percival SL. Proteases and delayed wound healing. Adv Wound Care. 2013;2:438–47. https://doi.org/10.1089/wound.2012.0370.
Rajalekshmy GP, Rekha MR. Wound healing effects of glucose oxidase – peroxidase incorporated alginate diamine PEG-g-poly (PEGMA) xerogels under high glucose conditions: an in vitro evaluation. Materialia. 2022;23:101464. https://doi.org/10.1016/j.mtla.2022.101464.
Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018;9:119. https://doi.org/10.1038/s41419-017-0135-z.
Article CAS PubMed PubMed Central Google Scholar
Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nat Rev Mol Cell Biol. 2024. 1–18. https://doi.org/10.1038/s41580-024-00715-1.
Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34:599–610. https://doi.org/10.1007/s12325-017-0478-y.
Article PubMed PubMed Central Google Scholar
Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine, Stem Cell Investig. 2019;6:19. https://doi.org/10.21037/sci.2019.06.04.
Hsieh M-CW, Wang W-T, Lin C-Y, Kuo Y-R, Lee S-S, Hou M-F, Wu Y-C. Stem cell-based therapeutic strategies in diabetic wound healing. Biomedicines. 2022;10:2085. https://doi.org/10.3390/biomedicines10092085.
Article CAS PubMed PubMed Central Google Scholar
Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells. 2021;10:1729. https://doi.org/10.3390/cells10071729.
Article CAS PubMed PubMed Central Google Scholar
Musiał-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant. 2019;28:801–12. https://doi.org/10.1177/0963689719837897.
Article PubMed PubMed Central Google Scholar
Ahangar P, Mills SJ, Cowin AJ. Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair. Int J Mol Sci. 2020;21:7038. https://doi.org/10.3390/ijms21197038.
Article CAS PubMed PubMed Central Google Scholar
Pinho AG, Cibrão JR, Silva NA, Monteiro S, Salgado AJ. Cell secretome: basic insights and therapeutic opportunities for CNS disorders. Pharmaceuticals. 2020;13:31. https://doi.org/10.3390/ph13020031.
Article CAS PubMed PubMed Central Google Scholar
Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol. 2018;9. https://doi.org/10.3389/fimmu.2018.02837.
Scridon A. Platelets and their role in hemostasis and thrombosis—from physiology to pathophysiology and therapeutic implications. Int J Mol Sci. 2022;23:12772. https://doi.org/10.3390/ijms232112772.
Article CAS PubMed PubMed Central Google Scholar
Park S-R, Kim J-W, Jun H-S, Roh JY, Lee H-Y, Hong I-S. Stem cell secretome and its effect on cellular mechanisms relevant to wound healing. Mol Ther. 2018;26:606–17. https://doi.org/10.1016/j.ymthe.2017.09.023.
Article CAS PubMed Google Scholar
Ward LSC, Sheriff L, Marshall JL, Manning JE, Brill A, Nash GB, McGettrick HM. Podoplanin regulates the migration of mesenchymal stromal cells and their interaction with platelets. J Cell Sci. 2019;132(5):jcs222067. https://doi.org/10.1242/jcs.222067.
Luengo Gimeno F, Gatto S, Ferro J, Croxatto JO, Gallo JE. Preparation of platelet-rich plasma as a tissue adhesive for experimental transplantation in rabbits. Thromb J. 2006;4:18. https://doi.org/10.1186/1477-9560-4-18.
Jiang Y, Fu W-C, Zhang L. Mechanism of induction of fibroblast to corneal endothelial cell. Asian Pac J Trop Med. 2014;7:655–8. https://doi.org/10.1016/S1995-7645(14)60110-3.
Article CAS PubMed Google Scholar
Sears V, Danaoui Y, Ghosh G. Impact of mesenchymal stem cell-secretome-loaded hydrogel on proliferative and migratory activities of hyperglycemic fibroblasts. Mater Today Commun. 2021;27:102285. https://doi.org/10.1016/j.mtcomm.2021.102285.
Article CAS PubMed PubMed Central Google Scholar
Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D, Georgopoulos NT. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14:89–96. https://doi.org/10.1111/iwj.12557.
Hersant B, Sid-Ahmed M, Braud L, Jourdan M, Baba-Amer Y, Meningaud J-P, Rodriguez A-M. Platelet-rich plasma improves the wound healing potential of mesenchymal stem cells through paracrine and metabolism alterations. Stem Cells Int. 2019;2019:1234263. https://doi.org/10.1155/2019/1234263.
Article CAS PubMed PubMed Central Google Scholar
Clarke DN, Martin AC. Roles of the actin cytoskeleton and cell adhesion in tissue morphogenesis. Curr Biol CB. 2021;31:R667–80. https://doi.org/10.1016/j.cub.2021.03.031.
Article CAS PubMed Google Scholar
Xu P, Wu Y, Zhou L, Yang Z, Zhang X, Hu X, Yang J, Wang M, Wang B, Luo G, He W, Cheng B. Platelet-rich plasma accelerates skin wound healing by promoting re-epithelialization. Burns Trauma. 2020;8:tkaa028. https://doi.org/10.1093/burnst/tkaa028.
Wang G, Lin Z, Li Y, Chen L, Reddy SK, Hu Z, Garza LA. Colonizing microbiota is associated with clinical outcomes in diabetic wound healing. Adv Drug Deliv Rev. 2023;194:114727. https://doi.org/10.1016/j.addr.2023.114727.
Article CAS PubMed PubMed Central Google Scholar
Shaw TD, Krasnodembskaya AD, Schroeder GN, Zumla A, Maeurer M, O’Kane CM. Mesenchymal stromal cells: an antimicrobial and host-directed therapy for complex infectious diseases. Clin Microbiol Rev. n.d.;34:e00064–21. https://doi.org/10.1128/CMR.00064-21.
Karinja SJ, Spector JA. Treatment of infected wounds in the age of antimicrobial resistance: contemporary alternative therapeutic options. Plast Reconstr Surg. 2018;142:1082–92. https://doi.org/10.1097/PRS.0000000000004799.
Article CAS PubMed Google Scholar
Marx C, Gardner S, Harman RM, Van de Walle GR. The mesenchymal stromal cell secretome impairs methicillin-resistant Staphylococcus aureus biofilms via cysteine protease activity in the equine model. Stem Cells Transl Med. 2020;9:746–57. https://doi.org/10.1002/sctm.19-0333.
Article CAS PubMed PubMed Central Google Scholar
Marx C, Gardner S, H
Comments (0)