Vajkoczy, P., Laschinger, M. & Engelhardt, B. α4-integrin-VCAM-1 binding mediates G-protein–independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J. Clin. Invest. 108, 557–565 (2001).
Article CAS PubMed PubMed Central Google Scholar
Steinman, L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat. Rev. Drug Discov. 4, 510–518 (2005).
Article CAS PubMed Google Scholar
Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395 (2018).
Article CAS PubMed Google Scholar
Hove, H. V. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).
Fitzpatrick, Z. et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587, 472–476 (2020).
Article CAS PubMed PubMed Central Google Scholar
Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074 (2021).
Article CAS PubMed PubMed Central Google Scholar
Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature https://doi.org/10.1038/s41586-020-03116-4 (2021).
Croese, T., Castellani, G. & Schwartz, M. Immune cell compartmentalization for brain surveillance and protection. Nat Immunol. https://doi.org/10.1038/s41590-021-00994-2 (2021).
Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).
Article CAS PubMed PubMed Central Google Scholar
Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).
Article CAS PubMed PubMed Central Google Scholar
Absinta, M. et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 6, e29738 (2017).
Article PubMed PubMed Central Google Scholar
Schläger, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).
Ringstad, G. & Eide, P. K. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat. Commun. 11, 354 (2020).
Article CAS PubMed PubMed Central Google Scholar
Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell https://doi.org/10.1016/j.cell.2020.12.040 (2021).
Merlini, A. et al. Distinct roles of the meningeal layers in CNS autoimmunity. Nat. Neurosci. 25, 887–899 (2022).
Article CAS PubMed Google Scholar
Li, Z. et al. Blockade of VEGFR3 signaling leads to functional impairment of dural lymphatic vessels without affecting autoimmune neuroinflammation. Sci. Immunol. 8, eabq0375 (2023).
Article CAS PubMed Google Scholar
Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).
Article CAS PubMed PubMed Central Google Scholar
Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci. https://doi.org/10.1038/s41593-018-0301-3 (2018).
Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021).
Article CAS PubMed PubMed Central Google Scholar
Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021).
Article CAS PubMed PubMed Central Google Scholar
Yao, H. et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 560, 55–60 (2018).
Article CAS PubMed PubMed Central Google Scholar
Mazzitelli, J. A. et al. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat. Neurosci. https://doi.org/10.1038/s41593-022-01029-1 (2022).
Pulous, F. E. et al. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat. Neurosci. 25, 567–576 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kolabas, Z. I. et al. Distinct molecular profiles of skull bone marrow in health and neurological disorders. Cell 186, 3706–3725 (2023).
Article CAS PubMed PubMed Central Google Scholar
Lachkar, S. et al. The diploic veins: a comprehensive review with clinical applications. Cureus 11, e4422 (2019).
García-González, U. et al. The diploic venous system: surgical anatomy and neurosurgical implications. Neurosurg. Focus 27, E2 (2009).
Alarfaj, A. et al. Magnetic resonance imaging analysis of human skull diploic venous anatomy. Surg. Neurol. Int. 12, 249 (2021).
Article PubMed PubMed Central Google Scholar
Grüneboom, A. et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat. Metab. 1, 236–250 (2019).
Article PubMed PubMed Central Google Scholar
Raggatt, L. J. & Partridge, N. C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285, 25103–25108 (2010).
Article CAS PubMed PubMed Central Google Scholar
Wang, Y. et al. Early developing B cells undergo negative selection by central nervous system-specific antigens in themeninges. Immunity https://doi.org/10.1016/j.immuni.2021.09.016 (2021).
Schafflick, D. et al. Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat. Neurosci. 24, 1225–1234 (2021).
Article CAS PubMed Google Scholar
Niu, C. et al. Identification of hematopoietic stem cells residing in the meninges of adult mice at steady state. Cell Rep. 41, 111592 (2022).
Article CAS PubMed Google Scholar
Ringstad, G. & Eide, P. K. Molecular trans-dural efflux to skull bone marrow in humans with cerebrospinal fluid disorders. Brain https://doi.org/10.1093/brain/awab388 (2021).
Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).
Article CAS PubMed Google Scholar
Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).
Article CAS PubMed PubMed Central Google Scholar
Gao, X. et al. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 589, 591–596 (2021).
Article CAS PubMed Google Scholar
Moalem, G. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49–55 (1999).
Article CAS PubMed Google Scholar
Russo, M. V., Latour, L. L. & McGavern, D. B. Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nat. Immunol. 19, 442–452 (2018).
Article CAS PubMed PubMed Central Google Scholar
Mastorakos, P. et al. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat. Neurosci. 24, 245–258 (2021).
Article CAS PubMed PubMed Central Google Scholar
Salvador, A. F. M. & Kipnis, J. Immune response after central nervous system injury. Semin. Immunol. https://doi.org/10.1016/j.smim.2022.101629 (2022).
Courties, G. et al. Ischemic stroke activates hematopoietic bone marrow stem cells. Circ. Res. 116, 407–417 (2015).
Article CAS PubMed Google Scholar
Hadjikhani, N. et al. Extra‐axial inflammatory signal in parameninges in migraine with visual aura. Ann. Neurol. 87, 939–949 (2020).
Article PubMed PubMed Central Google Scholar
Klein, R. S. et al. Neuroinflammation during RNA viral infections. Annu. Rev. Immunol. 37, 73–95 (2019).
Comments (0)