X-CHIME enables combinatorial, inducible, lineage-specific and sequential knockout of genes in the immune system

Gu, H., Marth, J. D., Orban, P. C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

Article  CAS  PubMed  Google Scholar 

Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

Article  CAS  PubMed  Google Scholar 

Jaenisch, R. Transgenic animals. Science 240, 1468–1474 (1988).

Article  CAS  PubMed  Google Scholar 

Woo, S.-R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

Article  CAS  PubMed  Google Scholar 

Paterson, A. M. et al. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J. Exp. Med. 212, 1603–1621 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, H. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin, H., Kauffman, K. J. & Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 16, 387–399 (2017).

Article  CAS  PubMed  Google Scholar 

Wei, T. et al. Delivery of tissue-targeted scalpels: opportunities and challenges for in vivo CRISPR/Cas-based genome editing. ACS Nano 14, 9243–9262 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldstein, J. M. et al. In situ modification of tissue stem and progenitor cell genomes. Cell Rep. 27, 1254–1264.e7 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

LaFleur, M. W. et al. A CRISPR–Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10, 1668 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Shen, J. P. et al. Combinatorial CRISPR–Cas9 screens for de novo mapping of genetic interactions. Nat. Methods 14, 573–576 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chylinski, K. et al. CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loci. Nat. Commun. 10, 5454 (2019).

Article  PubMed  PubMed Central  Google Scholar 

LaFleur, M. W. et al. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat. Immunol. 20, 1335–1347 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goh, P. K. et al. PTPN2 elicits cell autonomous and non–cell autonomous effects on antitumor immunity in triple-negative breast cancer. Sci. Adv. 8, eabk3338 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiede, F. et al. PTPN2 phosphatase deletion in T cells promotes anti‐tumour immunity and CAR T‐cell efficacy in solid tumours. EMBO J. 39, e103637 (2020).

Article  CAS  PubMed  Google Scholar 

Liang, S. et al. A small molecule inhibitor of PTP1B and PTPN2 enhances T cell anti-tumor immunity. Nat. Commun. 14, 4524 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baumgartner, C. K. et al. The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity. Nature https://doi.org/10.1038/s41586-023-06575-7 (2023).

Asante-Appiah, E. et al. The YRD motif is a major determinant of substrate and inhibitor specificity in T-cell protein-tyrosine phosphatase. J. Biol. Chem. 276, 26036–26043 (2001).

Article  CAS  PubMed  Google Scholar 

Jia, Z., Barford, D., Flint, A. J. & Tonks, N. K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 268, 1754–1758 (1995).

Article  CAS  PubMed  Google Scholar 

Wiede, F. et al. PTP1B is an intracellular checkpoint that limits T-cell and CAR T-cell antitumor immunity. Cancer Discov. 12, 752–773 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heinonen, K. M., Bourdeau, A., Doody, K. M. & Tremblay, M. L. Protein tyrosine phosphatases PTP-1B and TC-PTP play nonredundant roles in macrophage development and IFN-γ signaling. Proc. Natl Acad. Sci. USA 106, 9368–9372 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson, M. T. et al. Simultaneous fluorescence-activated cell sorter analysis of two distinct transcriptional elements within a single cell using engineered green fluorescent proteins. Proc. Natl Acad. Sci. USA 93, 8508–8511 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubrot, J. et al. In vivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma. Immunity 54, 571–585.e6 (2021).

Article  CAS  PubMed  Google Scholar 

Chu, V. T. et al. Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proc. Natl Acad. Sci. USA 113, 12514–12519 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lao, Z., Raju, G. P., Bai, C. B. & Joyner, A. L. MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep. 2, 386–396 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiou, S.-H. et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Gene Dev. 29, 1576–1585 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seki, A. & Rutz, S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J. Exp. Med. 215, 985–997 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maekawa, Y. et al. Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat. Immunol. 9, 1140–1147 (2008).

Article  CAS  PubMed  Google Scholar 

You-Ten, K. E. et al. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase–deficient mice. J. Exp. Med. 186, 683–693 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiede, F. et al. Strain-dependent differences in bone development, myeloid hyperplasia, morbidity and mortality in Ptpn2-deficient mice. PLoS ONE 7, e36703 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huh, W. J. et al. Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology 142, 21–24.e7 (2012).

Article  CAS  PubMed  Google Scholar 

Bohin, N., Carlson, E. A. & Samuelson, L. C. Genome toxicity and impaired stem cell function after conditional activation of CreERT2 in the intestine. Stem Cell Rep. 11, 1337–1346 (2018).

Article 

Comments (0)

No login
gif