World Health Organisation. Cardiovascular diseases report 2019. https://www.who.int/health-topics/cardiovascular-diseases
Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi SKBM, AlKatheeri R, et al. Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus. 2020;12:e9349. https://doi.org/10.7759/cureus.9349.
Article PubMed PubMed Central Google Scholar
Zaghloul A, Iorgoveanu C, Desai A, Balakumaran K, Chen K. Methylenetetrahydrofolate Reductase polymorphism and premature coronary artery disease. Cureus. 2019;11(6):e5014. https://doi.org/10.7759/cureus.5014.PMID:31497444;PMCID:PMC6716763.
Article PubMed PubMed Central Google Scholar
Sreeniwas Kumar A, Sinha N. Cardiovascular disease in India: a 360 degree overview. Med J Armed Forc India. 2020;76(1):1–3. https://doi.org/10.1016/j.mjafi.2019.12.005.
Shivkar RR, Gawade GC, Padwal MK, Diwan AG, Mahajan SA, Kadam CY. Association of MTHFR C677T (rs1801133) and A1298C (rs1801131) polymorphisms with serum homocysteine, folate and vitamin B12 in patients with young coronary artery disease. Indian J Clin Biochem. 2022;37(2):224–31. https://doi.org/10.1007/s12291-021-00982-1.
Article CAS PubMed Google Scholar
McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res. 2016;118(4):564–78. https://doi.org/10.1161/CIRCRESAHA.115.306566.
Article CAS PubMed Google Scholar
Ramkaran P, Phulukdaree A, Khan S, Moodley D, Chuturgoon AA. Methylenetetrahydrofolate reductase C677T polymorphism is associated with increased risk of coronary artery disease in young South African Indians. Gene. 2015;571(1):28–32. https://doi.org/10.1016/j.gene.2015.06.044.
Article CAS PubMed Google Scholar
Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;10(14):6. https://doi.org/10.1186/1475-2891-14-6.
Yuan S, Mason AM, Carter P, Burgess S, Larsson SC. Homocysteine, B vitamins, and cardiovascular disease: a Mendelian randomization study. BMC Med. 2021;19(1):97. https://doi.org/10.1186/s12916-021-01977-8.
Article CAS PubMed PubMed Central Google Scholar
Maron BA, Loscalzo J. The treatment of hyperhomocysteinemia. Annu Rev Med. 2009;60:39–54. https://doi.org/10.1146/annurev.med.60.041807.123308.
Article CAS PubMed PubMed Central Google Scholar
Song J, Hou J, Zhao Q, Liu X, Guo Q, Yin D, Song Y, Li X, Wang S, Wang X, Duan J. Polymorphism of MTHFR C677T Gene and the associations with the severity of essential hypertension in northern Chinese population. Int J Hypertens. 2020;14(2020):1878917. https://doi.org/10.1155/2020/1878917.
Yadav U, Kumar P, Gupta S, Rai V. Distribution of MTHFR C677T gene polymorphism in healthy north Indian population and an updated meta-analysis. Indian J Clin Biochem. 2017;32(4):399–410. https://doi.org/10.1007/s12291-016-0619-0.
Article CAS PubMed Google Scholar
Li CX, Liu YG, Che YP, Ou JL, Ruan WC, Yu YL, Li HF. Association between MTHFR C677T polymorphism and susceptibility to autism spectrum disorders: a meta-analysis in Chinese Han population. Front Pediatr. 2021;10(9):598805. https://doi.org/10.3389/fped.2021.598805.
Wilcken DE, Wang XL, Sim AS, McCredie RM, et al. Distribution in healthy and coronary populations of the methylenetetrahydrofolate reductase (MTHFR) C677T mutation. Arterioscler Thromb Vasc Biol. 1996;16(7):878–82. https://doi.org/10.1161/01.atv.16.7.878.
Article CAS PubMed Google Scholar
Huh HJ, Chi HS, Shim EH, Jang S, Park CJ. Gene–nutrition interactions in coronary artery disease: correlation between the MTHFR C677T polymorphism and folate and homocysteine status in a Korean population. Thromb Res. 2006;117(5):501–6. https://doi.org/10.1016/j.thromres.2005.04.009.
Article CAS PubMed Google Scholar
Pereira AC, Miyakawa AA, Lopes NH, Soares PR, de Oliveira SA, Cesar LA, et al. Dynamic regulation of MTHFR mRNA expression and C677T genotype modulate mortality in coronary artery disease patients after revascularization. Thromb Res. 2007;121(1):25–32. https://doi.org/10.1016/j.thromres.2007.03.004.
Article CAS PubMed Google Scholar
Guerzoni AR, Biselli PM, Godoy MF, Souza DR, Haddad R, Eberlin MN, Pavarino-Bertelli EC, Goloni-Bertollo EM. Homocysteine and MTHFR and VEGF gene polymorphisms: impact on coronary artery disease. Arq Bras Cardiol. 2009;92(4):263–8. https://doi.org/10.1590/s0066-782x2009000400003.
Article CAS PubMed Google Scholar
Eftychiou C, Antoniades L, Makri L, Koumas L, Costeas PA, Kyriakou E, et al. Homocysteine levels and MTHFR polymorphisms in young patients with acute myocardial infarction: a case control study. Hellenic J Cardiol. 2012;53(3):189–94.
Strauss E, Supinski W, Radziemski A, Oszkinis G, Pawlak AL, Gluszek J. Is hyperhomocysteinemia a causal factor for heart failure? The impact of the functional variants of MTHFR and PON1 on ischemic and non-ischemic etiology. Int J Cardiol. 2017;228:37–44. https://doi.org/10.1016/j.ijcard.2016.11.213.
Conkbayir C, Fahrioglu YR, Gencer P, Barin B, Yucel G, Yildiz CE, et al. Impact of genetic defects on coronary atherosclerosis among Turkish cypriots. Heart Surg Forum. 2017;20(5):E223–9. https://doi.org/10.1532/hsf.1587.
Luo Z, Lu Z, Muhammad I, Chen Y, Chen Q, Zhang J, et al. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis. Lipids Health Dis. 2018;17(1):191. https://doi.org/10.1186/s12944-018-0837-y.
Article CAS PubMed PubMed Central Google Scholar
Long Y, Zhao XT, Liu C, Sun YY, Ma YT, Liu XY, et al. A case-control study of the association of the polymorphisms of MTHFR and APOE with risk factors and the severity of coronary artery disease. Cardiology. 2019;142(3):149–57. https://doi.org/10.1159/000499866.
Bouzidi N, Hassine M, Fodha H, Ben Messaoud M, Maatouk F, Gamra H. Association of the methylene-tetrahydrofolate reductase gene rs1801133 C677T variant with serum homocysteine levels, and the severity of coronary artery disease. Sci Rep. 2020;10(1):10064. https://doi.org/10.1038/s41598-020-66937-3.
Article CAS PubMed PubMed Central Google Scholar
Rallidis LS, Kosmas N, Stathopoulou E, Rallidi M, Gialeraki A. Homozygosity of the TT methylenetetrahydrofolate reductase C677T genotype is an independent long-term predictor of cardiac death in patients with premature myocardial infarction. Curr Med Res Opin. 2021;37(7):1079–84. https://doi.org/10.1080/03007995.2021.1912720.
Article CAS PubMed Google Scholar
Sugijo H, Sargowo D, Widjajanto E, Romdoni R. The role of methylenetetrahydrofolate reductase C677T gene polymorphism as a risk factor for coronary artery disease: a cross-sectional study in the Sidoarjo regional general hospital. Pan Afr Med J. 2022;41:212. https://doi.org/10.11604/pamj.2022.41.212.24916.
Article PubMed PubMed Central Google Scholar
Bickel C, Schnabel RB, Zengin E, Lubos E, Rupprecht H, Lackner K, Proust C, Tregouet D, Blankenberg S, Westermann D, Sinning C. Homocysteine concentration in coronary artery disease: Influence of three common single nucleotide polymorphisms. Nutr Metab Cardiovasc Dis. 2017;27(2):168–75. https://doi.org/10.1016/j.numecd.2016.09.005.
Article CAS PubMed Google Scholar
Lupi-Herrera E, Soto-López ME, Lugo-Dimas AJ, Núñez-Martínez ME, Gamboa R, Huesca-Gómez C, Sierra-Galán LM, Guarner-Lans V. Polymorphisms C677T and A1298C of MTHFR gene: homocysteine levels and prothrombotic biomarkers in coronary and pulmonary thromboembolic disease. Clin Appl Thromb Hemost. 2019;25:1076029618780344. https://doi.org/10.1177/1076029618780344.
Article CAS PubMed Google Scholar
Zhang SY, Xuan C, Zhang XC, Zhu J, Yue K, Zhao P, He GW, et al. Association between MTHFR gene common variants, serum homocysteine, and risk of early-onset coronary artery disease: a case-control study. Biochem Genet. 2020;58(2):245–56. https://doi.org/10.1007/s10528-019-09937-x.
Article CAS PubMed Google Scholar
Vinukonda G, Shaik Mohammad N, MdNurul Jain J, Prasad Chintakindi K, Rama Devi Akella R. Genetic and environmental influences on total plasma homocysteine and coronary artery disease (CAD) risk among South Indians. Clin Chim Acta. 2009;405(1–2):127–31. https://doi.org/10.1016/j.cca.2009.04.015.
Article CAS PubMed Google Scholar
Tripathi R, Tewari S, Singh PK, Agarwal S. Association of homocysteine and methylene tetrahydrofolate reductase (MTHFR C677T) gene polymorphism with coronary artery disease (CAD) in the population of North India. Genet Mol Biol. 2010;33(2):224–8. https://doi.org/10.1590/S1415-47572010005000026.
Article CAS PubMed PubMed Central Google Scholar
Munshi R, Panchal F, Kulkarni V, Chaurasia A. Methylenetetrahydrofolate reductase polymorphism in healthy volunteers and its correlation with homocysteine levels in patients with thrombosis. Indian J Pharmacol. 2019;51(4):248–54. https://doi.org/10.4103/ijp.IJP_215_19.
Article CAS PubMed PubMed Central Google Scholar
Raina JK, Sharma M, Panjaliya RK, Dogra V, Bakaya A, Kumar P. Association of ESR1 (rs2234693 and rs9340799), CETP (rs708272), MTHFR (rs1801133 and rs2274976) and MS (rs185087) polymorphisms with coronary artery disease (CAD). BMC Cardiovasc Disord. 2020;20(1):340. https://doi.org/10.1186/s12872-020-01618-7.
Comments (0)