Childhood development of brain white matter myelin: a longitudinal T1w/T2w-ratio study

Andersson JL, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125:1063–1078

Article  PubMed  Google Scholar 

Andersson JL, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2):870–888

Article  PubMed  Google Scholar 

Andersson JL, Graham MS, Zsoldos E, Sotiropoulos SN (2016) Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 141:556–572

Article  PubMed  Google Scholar 

Andersson JL, Graham MS, Drobnjak I, Zhang H, Filippini N, Bastiani M (2017) Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement. Neuroimage 152:450–466

Article  PubMed  Google Scholar 

Arshad M, Stanley JA, Raz N (2017) Test-retest reliability and concurrent validity of in vivo myelin content indices: myelin water fraction and calibrated T(1) w/T(2) w image ratio. Hum Brain Mapp 38(4):1780–1790. https://doi.org/10.1002/hbm.23481

Article  PubMed  Google Scholar 

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JCJN (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044

Article  PubMed  Google Scholar 

Baranger DAA, Halchenko YO, Satz S, Ragozzino R, Iyengar S, Swartz HA, Manelis A (2021) Protocol for a machine learning algorithm predicting depressive disorders using the T1w/T2w ratio. MethodsX 8:101595. https://doi.org/10.1016/j.mex.2021.101595

Article  PubMed  PubMed Central  Google Scholar 

Bastiani M, Cottaar M, Fitzgibbon SP, Suri S, Alfaro-Almagro F, Sotiropoulos SN, Jbabdi S, Andersson JL (2019) Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction. Neuroimage 184:801–812

Article  PubMed  Google Scholar 

Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.

Baum GL, Flournoy JC, Glasser MF, Harms MP, Mair P, Sanders AFP, Barch DM, Buckner RL, Bookheimer S, Dapretto M, Smith S, Thomas KM, Yacoub E, Van Essen DC, Somerville LH (2022) Graded variation in T1w/T2w ratio during adolescence: measurement, caveats, and implications for development of cortical myelin. J Neurosci: off J Soc Neurosci 42(29):5681–5694. https://doi.org/10.1523/JNEUROSCI.2380-21.2022

Article  CAS  Google Scholar 

Beaulieu C, Johansen-Berg H, Behrens T (2009) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Elsevier, London

Google Scholar 

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (methodol) 57(1):289–300

Google Scholar 

Brauer J, Anwander A, Friederici AD (2011) Neuroanatomical prerequisites for language functions in the maturing brain. Cereb Cortex 21(2):459–466. https://doi.org/10.1093/cercor/bhq108

Article  PubMed  Google Scholar 

Buyanova IS, Arsalidou M (2021) Cerebral white matter myelination and relations to age, gender, and cognition: a selective review. Front Human Neurosci. https://doi.org/10.3389/fnhum.2021.662031

Article  Google Scholar 

Chen B, Linke A, Olson L, Kohli J, Kinnear M, Sereno M, Müller R-A, Carper R, Fishman I (2022) Cortical myelination in toddlers and preschoolers with autism spectrum disorder. Dev Neurobiol 82(3):261–274. https://doi.org/10.1002/dneu.22874

Article  PubMed  PubMed Central  Google Scholar 

Cordero-Grande L, Christiaens D, Hutter J, Price AN, Hajnal JV (2019) Complex diffusion-weighted image estimation via matrix recovery under general noise models. Neuroimage 200:391–404

Article  PubMed  Google Scholar 

Dhollander T, Mito R, Raffelt D, Connelly A (2019) Improved white matter response function estimation for 3-tissue constrained spherical deconvolution. Proc Intl Soc Mag Reson Med. https://www.researchgate.net/publication/331165168_Improved_white_matter_response_function_estimation_for_3-tissue_constrained_spherical_deconvolution

Du G, Lewis MM, Sica C, Kong L, Huang X (2019) Magnetic resonance T1w/T2w ratio: a parsimonious marker for Parkinson disease. Ann Neurol 85(1):96–104. https://doi.org/10.1002/ana.25376

Article  PubMed  Google Scholar 

Fonov VS, Evans AC, McKinstry RC, Almli C, Collins DJN (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47:S102

Article  Google Scholar 

Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Neuroimage BDCGJ (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1):313–327

Article  PubMed  Google Scholar 

Ganzetti M, Wenderoth N, Mantini D (2015) Mapping pathological changes in brain structure by combining T1- and T2-weighted MR imaging data. Neuroradiology 57(9):917–928. https://doi.org/10.1007/s00234-015-1550-4

Article  PubMed  PubMed Central  Google Scholar 

Genc S, Smith RE, Malpas CB, Anderson V, Nicholson JM, Efron D, Sciberras E, Seal ML, Silk TJ (2018) Development of white matter fibre density and morphology over childhood: a longitudinal fixel-based analysis. Neuroimage 183:666–676. https://doi.org/10.1016/j.neuroimage.2018.08.043

Article  PubMed  Google Scholar 

Genc S, Malpas CB, Gulenc A, Sciberras E, Efron D, Silk TJ, Seal ML (2020) Longitudinal patterns of white matter fibre density and morphology in children are associated with age and pubertal stage. Dev Cogn Neurosci 45:100853. https://doi.org/10.1016/j.dcn.2020.100853

Article  PubMed  PubMed Central  Google Scholar 

Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. J Neurosci 31(32):11597–11616

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haist F, Adamo M, Han J, Lee K, Stiles J (2011) On the development of human face-processing abilities: Evidence for hyperactivation of the extended face system in children. J vis 11(11):461–461. https://doi.org/10.1167/11.11.461

Article  Google Scholar 

Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

Article  CAS  PubMed  Google Scholar 

Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841

Article  PubMed  Google Scholar 

Kellner E, Dhital B, Kiselev VG, Reisert M (2016) Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med 76(5):1574–1581

Article  PubMed  Google Scholar 

Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31(30):10937. https://doi.org/10.1523/JNEUROSCI.5302-10.2011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lebel C, Deoni SCL (2018) The development of brain white matter microstructure. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.12.097

Article  PubMed  Google Scholar 

Lewis F, Butler A, Gilbert L (2011) A unified approach to model selection using the likelihood ratio test. Methods Ecol Evol 2(2):155–162

Article  Google Scholar 

Luo X, Li K, Zeng Q, Huang P, Jiaerken Y, Wang S, Shen Z, Xu X, Xu J, Wang C, Kong L, Zhou J, Zhang M (2019) Application of T1-/T2-weighted ratio mapping to elucidate intracortical demyelination process in the Alzheimer’s disease continuum. Front Neurosci 13:904. https://doi.org/10.3389/fnins.2019.00904

Article  PubMed  PubMed Central  Google Scholar 

May T, Adesina I, McGillivray J, Rinehart NJ (2019) Sex differences in neurodevelopmental disorders. Curr Opin Neurol 32(4):622–626

Article  PubMed  Google Scholar 

Norbom LB, Rokicki J, Alnaes D, Kaufmann T, Doan NT, Andreassen OA, Westlye LT, Tamnes CK (2020) Maturation of cortical microstructure and cognitive development in childhood and adolescence: a T1w/T2w ratio MRI study. Hum Brain Mapp 41(16):4676–4690. https://doi.org/10.1002/hbm.25149

Article  PubMed  PubMed Central  Google Scholar 

Patel Y, Shin J, Drakesmith M, Evans J, Pausova Z, Paus T (2020) Virtual histology of multi-modal magnetic resonance imaging of cerebral cortex in young men. Neuroimage 218:116968. https://doi.org/10.1016/j.neuroimage.2020.116968

Article  CAS  PubMed  Google Scholar 

Petracca M, El Mendili MM, Moro M, Cocozza S, Podranski K, Fleysher L, Inglese M (2020) Laminar analysis of the cortical T1/T2-weighted ratio at 7T. Neurol(r) Neuroimmunol Neuroinflamm. https://doi.org/10.1212/NXI.0000000000000900

Article  Google Scholar 

Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, Maintainer R (2017) Package ‘nlme.’ Linear Nonlinear Mixed Eff Models Version 3(1):274

Google Scholar 

Preziosa P, Bouman PM, Kiljan S, Steenwijk MD, Meani A, Pouwels PJ, Rocca MA, Filippi M, Geurts JJG, Jonkman LE (2021) Neurite density explains cortical T1-weighted/T2-weighted ratio in multiple sclerosis. J Neurol Neurosurg Psychiatry 92(7):790–792. https://doi.org/10.1136/jnnp-2020-324391

Article  PubMed  Google Scholar 

R Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

Raffelt DA, Tournier JD, Smith RE, Vaughan DN, Jackson G, Ridgway GR, Connelly A (2017) Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage 144:58–73. https://doi.org/10.1016/j.neuroimage.2016.09.029

Article  PubMed  Google Scholar 

Silk TJ, Genc S, Anderson V, Efron D, Hazell P, Nicholson JM, Kean M, Malpas CB, Sciberras E (2016) Developmental brain trajectories in children with ADHD and controls: a longitudinal neuroimaging study. BMC Psychiatry 16(1):59. https://doi.org/10.1186/s12888-016-0770-4

Comments (0)

No login
gif