Adickes ED, Folkerth RD, Sims KL (1997) Use of perfusion fixation for improved neuropathologic examination. Arch Pathol Lab Med 121:1199–1206
Adler DH, Pluta J, Kadivar S, Craige C, Gee JC, Avants BB, Yushkevich PA (2014) Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI. Neuroimage 84:505–523. https://doi.org/10.1016/j.neuroimage.2013.08.067
Adler DH, Wisse LEM, Ittyerah R, Pluta JB, Ding SL, Xie L, Wang J, Kadivar S, Robinson JL, Schuck T, Trojanowski JQ, Grossman M, Detre JA, Elliott MA, Toledo JB, Liu W, Pickup S, Miller MI, Das SR, Wolk DA, Yushkevich PA (2018) Characterizing the human hippocampus in aging and Alzheimer’s disease using a computational atlas derived from ex vivo MRI and histology. Proc Natl Acad Sci USA 115:4252–4257. https://doi.org/10.1073/pnas.1801093115
Article CAS PubMed PubMed Central Google Scholar
Andrey P, Maurin Y (2005) Free-D: an integrated environment for three-dimensional reconstruction from serial sections. J Neurosci Meth 145:233–244. https://doi.org/10.1016/j.jneumeth.2005.01.006
Annese J, Schenker-Ahmed NM, Bartsch H, Maechler P, Sheh C, Thomas N, Kayano J, Ghatan A, Bresler N, Frosch MP, Klaming R, Corkin S (2014) Postmortem examination of patient H M ’s brain based on histological sectioning and digital 3D reconstruction. Nat Commun 5:3122. https://doi.org/10.1038/ncomms4122
Article CAS PubMed Google Scholar
Arnold SE, Lee VM, Gur RE, Trojanowski JQ (1991) Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci USA 88:10850–10854. https://doi.org/10.1073/pnas.88.23.10850
Article CAS PubMed PubMed Central Google Scholar
Banks P, Helle K (1965) The release of protein from the stimulated adrenal medulla. Biochem J 97:40C-41C. https://doi.org/10.1042/bj0970040c
Article CAS PubMed PubMed Central Google Scholar
Barbas H, Blatt GJ (1995) Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5:511–533. https://doi.org/10.1002/hipo.450050604
Article CAS PubMed Google Scholar
Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44:88–97. https://doi.org/10.1016/s0006-3223(98)00138-3
Article CAS PubMed Google Scholar
Benoy A, Dasgupta A, Sajikumar S (2018) Hippocampal area CA2: an emerging modulatory gateway in the hippocampal circuit. Exp Brain Res 236:919–931. https://doi.org/10.1007/s00221-018-5187-5
Article CAS PubMed Google Scholar
Bienkowski MS, Bowman I, Song MY, Gou L, Ard T, Cotter K, Zhu M, Benavidez NL, Yamashita S, Abu-Jaber J, Azam S, Lo D, Foster NN, Hintiryan H, Dong HW (2018) Integration of gene expression and brain-wide connectivity reveals the multiscale organization of mouse hippocampal networks. Nat Neurosci 21:1628–1643. https://doi.org/10.1038/s41593-018-0241-y
Article CAS PubMed PubMed Central Google Scholar
Bienkowski MS, Sepehrband F, Kurniawan ND, Stanis J, Korobkova L, Khanjani N, Clark K, Hintiryan H, Miller CA, Dong HW (2021) Homologous laminar organization of the mouse and human hippocampus. Sci Rep 11:3729. https://doi.org/10.1038/s41598-021-81362-w
Article CAS PubMed PubMed Central Google Scholar
Blümcke I (2009) Neuropathology of focal epilepsies: a critical review. Epilepsy Behav 15:34–39. https://doi.org/10.1016/j.yebeh.2009.02.033
Blümcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien CG, Pfäfflin M, Elger C, Widman G, Schramm J, Becker A, Braun KP, Leijten F, Baayen JC, Aronica E, Chassoux F, Hamer H, Stefan H, Rössler K, Thom M et al (2017) Histopathological findings in brain tissue obtained during epilepsy surgery. N Eng J Med 377:1648–1656. https://doi.org/10.1056/nejmoa1703784
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/bf00308809
Article CAS PubMed Google Scholar
Cavada C, Compañy T, Hernández-González A, Reinoso-Suárez F (1995) Acetylcholinesterase histochemistry in the macaque thalamus reveals territories selectively connected to frontal parietal and temporal association cortices. J Chem Neuroanat 8:245–257. https://doi.org/10.1016/0891-0618(95)00050-h
Article CAS PubMed Google Scholar
Cavada C, Compañy T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suárez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex: a review. Cereb Cortex 10:220–242. https://doi.org/10.1093/cercor/10.3.220
Article CAS PubMed Google Scholar
Chang C, Huang C, Zhou N, Li SX, Ver Hoef L, Gao Y (2018) The bumps under the hippocampus. Hum Brain Mapp 39:472–490. https://doi.org/10.1002/hbm.23856
Chen M, Tempst P, Yankner BA (1992) Secretogranin I/chromogranin B is a heparin-binding adhesive protein. J Neurochem 58:1691–1698. https://doi.org/10.1111/j.1471-4159.1992.tb10042.x
Article CAS PubMed Google Scholar
Chevaleyre V, Siegelbaum SA (2010) Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron 66:560–572. https://doi.org/10.1016/j.neuron.2010.04.013
Article CAS PubMed PubMed Central Google Scholar
Chung SH, Takai Y, Holz RW (1995) Evidence that the Rab3a-binding protein rabphilin3a enhances regulated secretion Studies in adrenal chromaffin cells. J Biol Chem 270:16714–16718. https://doi.org/10.1074/jbc.270.28.16714
Article CAS PubMed Google Scholar
Coras R, Blümcke I (2015) Clinico-pathological subtypes of hippocampal sclerosis in temporal lobe epilepsy and their differential impact on memory impairment. Neuroscience 309:153–161. https://doi.org/10.1016/j.neuroscience.2015.08.003
Article CAS PubMed Google Scholar
Corkin S (1984) Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Sem Neurol 4:249–259. https://doi.org/10.1055/s-2008-1041556
Dalton MA, McCormick C, Maguire EA (2019) Differences in functional connectivity along the anterior-posterior axis of human hippocampal subfields. Neuroimage 192:38–51. https://doi.org/10.1016/j.neuroimage.2019.02.066
Dam AM (1980) Epilepsy and neuron loss in the hippocampus. Epilepsia 21:617–629. https://doi.org/10.1111/j.1528-1157.1980.tb04315.x
Article CAS PubMed Google Scholar
D’amico MA, Ghinassi B, Izzicupo P, Manzoli L, Di Baldassarre A (2014) Biological function and clinical relevance of chromogranin A and derived peptides. Endocr Connect 3:R45-54. https://doi.org/10.1530/ec-14-0027
Article CAS PubMed PubMed Central Google Scholar
de Flores R, Berron D, Ding SL, Ittyerah R, Pluta JB, Xie L, Adler DH, Robinson JL, Schuck T, Trojanowski JQ, Grossman M, Liu W, Pickup S, Das SR, Wolk DA, Yushkevich PA, Wisse LEM (2020) Characterization of hippocampal subfields using ex vivo MRI and histology data: lessons for in vivo segmentation. Hippocampus 30:545–564. https://doi.org/10.1002/hipo.23172
DeKraker J, Lau JC, Ferko KM, Khan AR, Köhler S (2020) Hippocampal subfields revealed through unfolding and unsupervised clustering of laminar and morphological features in 3D BigBrain. Neuroimage 206:116328. https://doi.org/10.1016/j.neuroimage.2019.116328
Article CAS PubMed Google Scholar
Dickson DW, Ruan D, Crystal H, Mark MH, Davies P, Kress Y, Yen SH (1991) Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer’s disease: light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology 41:1402–1409. https://doi.org/10.1212/wnl.41.9.1402
Article CAS PubMed Google Scholar
Ding SL, Van Hoesen GW (2015) Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of cyto- and chemoarchitecture. J Comp Neurol 523:2233–2253. https://doi.org/10.1002/cne.23786
Dominguez N, van Weering JRT, Borges R, Toonen RFG, Verhage M (2018) Dense-core vesicle biogenesis and exocytosis in neurons lacking chromogranins A and B. J Neurochem 144:241–254. https://doi.org/10.1111/jnc.14263
Article CAS PubMed Google Scholar
Domínguez-Álvaro M, Montero-Crespo M, Blazquez-Llorca L, DeFelipe J, Alonso-Nanclares L (2019) 3D electron microscopy study of synaptic organization of the normal human transentorhinal cortex and its possible alterations in Alzheimer’s Disease. Neuro. https://doi.org/10.1523/eneuro.0140-19.2019
Dong H-W, Swanson LW, Chen L, Fanselow MS, Toga AW (2009) Genomic–anatomic evidence for distinct functional domains in hippocampal field CA1. Proc Natl Acad Sci USA 106:11794–11799. https://doi.org/10.1073/pnas.0812608106
Article PubMed PubMed Central Google Scholar
Dudek SM, Alexand
Comments (0)