Alappat JJ (2007) Ethnic variation in the incidence of ALS: a systematic review. Neurology 69(7):711. https://doi.org/10.1212/01.wnl.0000285431.01005.67. (author reply 711-712)
Alexianu ME, Ho BK, Mohamed AH, La Bella V, Smith RG, Appel SH (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 36(6):846–858. https://doi.org/10.1002/ana.410360608
Article CAS PubMed Google Scholar
Amado DA, Davidson BL (2021) Gene therapy for ALS: a review. Mol Ther 29(12):3345–3358. https://doi.org/10.1016/j.ymthe.2021.04.008
Article CAS PubMed PubMed Central Google Scholar
Baczyk M, Manuel M, Roselli F, Zytnicki D (2022a) Diversity of mammalian motoneurons and motor units. Adv Neurobiol 28:131–150. https://doi.org/10.1007/978-3-031-07167-6_6
Baczyk M, Manuel M, Roselli F, Zytnicki D (2022b) From physiological properties to selective vulnerability of motor units in amyotrophic lateral sclerosis. Adv Neurobiol 28:375–394. https://doi.org/10.1007/978-3-031-07167-6_15
Bellingham MC (2011) A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 17(1):4–31. https://doi.org/10.1111/j.1755-5949.2009.00116.x
Article CAS PubMed PubMed Central Google Scholar
Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 330(9):585–591. https://doi.org/10.1056/NEJM199403033300901
Article CAS PubMed Google Scholar
Bernard-Marissal N, Moumen A, Sunyach C, Pellegrino C, Dudley K, Henderson CE, Raoul C, Pettmann B (2012) Reduced calreticulin levels link endoplasmic reticulum stress and Fas-triggered cell death in motoneurons vulnerable to ALS. J Neurosci 32(14):4901–4912. https://doi.org/10.1523/JNEUROSCI.5431-11.2012
Article CAS PubMed PubMed Central Google Scholar
Bernard-Marissal N, Sunyach C, Marissal T, Raoul C, Pettmann B (2015) Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis 73:130–136. https://doi.org/10.1016/j.nbd.2014.09.009
Article CAS PubMed Google Scholar
Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392. https://doi.org/10.1126/science.1123511
Article CAS PubMed Google Scholar
Brockington A, Ning K, Heath PR, Wood E, Kirby J, Fusi N, Lawrence N, Wharton SB, Ince PG, Shaw PJ (2013) Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol 125(1):95–109. https://doi.org/10.1007/s00401-012-1058-5
Article CAS PubMed Google Scholar
Burke RE (1999) Revisiting the notion of “motor unit types.” Prog Brain Res 123:167–175
Article CAS PubMed Google Scholar
Burke RE, Tsairis P (1973) Anatomy and innervation ratios in motor units of cat gastrocnemius. J Physiol 234(3):749–765. https://doi.org/10.1113/jphysiol.1973.sp010370
Article CAS PubMed PubMed Central Google Scholar
Burke RE, Levine DN, Zajac FE 3rd (1971) Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science 174(4010):709–712. https://doi.org/10.1126/science.174.4010.709
Article CAS PubMed Google Scholar
Burke RE, Levine DN, Salcman M, Tsairis P (1974) Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol 238(3):503–514. https://doi.org/10.1113/jphysiol.1974.sp010540
Article CAS PubMed PubMed Central Google Scholar
Burke RE, Dum RP, Fleshman JW, Glenn LL, Lev-Tov A, O’Donovan MJ, Pinter MJ (1982) A HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. J Comp Neurol 209(1):17–28. https://doi.org/10.1002/cne.902090103
Article CAS PubMed Google Scholar
Button DC, Kalmar JM, Gardiner K, Cahill F, Gardiner PF (2007) Spike frequency adaptation of rat hindlimb motoneurons. J Appl Physiol (1985) 102(3):1041–1050. https://doi.org/10.1152/japplphysiol.01148.2006
Cain MD, Salimi H, Diamond MS, Klein RS (2019) Mechanisms of pathogen invasion into the central nervous system. Neuron 103(5):771–783. https://doi.org/10.1016/j.neuron.2019.07.015
Article CAS PubMed Google Scholar
Caligari M, Godi M, Guglielmetti S, Franchignoni F, Nardone A (2013) Eye tracking communication devices in amyotrophic lateral sclerosis: impact on disability and quality of life. Amyotroph Lateral Scler Frontotemporal Degener 14(7–8):546–552. https://doi.org/10.3109/21678421.2013.803576
Chio A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41(2):118–130. https://doi.org/10.1159/000351153
Article CAS PubMed Google Scholar
Christoforidou E, Joilin G, Hafezparast M (2020) Potential of activated microglia as a source of dysregulated extracellular microRNAs contributing to neurodegeneration in amyotrophic lateral sclerosis. J Neuroinflamm 17(1):135. https://doi.org/10.1186/s12974-020-01822-4
Collaborators GBDMND (2018) Global, regional, and national burden of motor neuron diseases 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17(12):1083–1097. https://doi.org/10.1016/S1474-4422(18)30404-6
Comley L, Allodi I, Nichterwitz S, Nizzardo M, Simone C, Corti S, Hedlund E (2015) Motor neurons with differential vulnerability to degeneration show distinct protein signatures in health and ALS. Neuroscience 291:216–229. https://doi.org/10.1016/j.neuroscience.2015.02.013
Article CAS PubMed Google Scholar
Comley LH, Nijssen J, Frost-Nylen J, Hedlund E (2016) Cross-disease comparison of amyotrophic lateral sclerosis and spinal muscular atrophy reveals conservation of selective vulnerability but differential neuromuscular junction pathology. J Comp Neurol 524(7):1424–1442. https://doi.org/10.1002/cne.23917
Cullheim S, Fleshman JW, Glenn LL, Burke RE (1987) Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons. J Comp Neurol 255(1):68–81. https://doi.org/10.1002/cne.902550106
Article CAS PubMed Google Scholar
Da Cruz S, Parone PA, Lopes VS, Lillo C, McAlonis-Downes M, Lee SK, Vetto AP, Petrosyan S, Marsala M, Murphy AN, Williams DS, Spiegelman BM, Cleveland DW (2012) Elevated PGC-1alpha activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab 15(5):778–786. https://doi.org/10.1016/j.cmet.2012.03.019
Article CAS PubMed PubMed Central Google Scholar
Dadon-Nachum M, Melamed E, Offen D (2011) The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci 43(3):470–477. https://doi.org/10.1007/s12031-010-9467-1
Article CAS PubMed Google Scholar
de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, Silsby M, Menon P, van den Bos M, Halliday GM, van den Berg LH, Van Den Bosch L, van Damme P, Kiernan MC, van Es MA, Vucic S (2020) TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 92(1):86–95. https://doi.org/10.1136/jnnp-2020-322983
De Winter F, Vo T, Stam FJ, Wisman LA, Bar PR, Niclou SP, van Muiswinkel FL, Verhaagen J (2006) The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol Cell Neurosci 32(1–2):102–117. https://doi.org/10.1016/j.mcn.2006.03.002
Article CAS PubMed Google Scholar
Dengler R, Konstanzer A, Kuther G, Hesse S, Wolf W, Struppler A (1990) Amyotrophic lateral sclerosis—macro-EMG and twitch forces of single motor units. Muscle Nerve 13(6):545–550. https://doi.org/10.1002/mus.880130612
Article CAS PubMed Google Scholar
Filezac de L’Etang A, Maharjan N, Cordeiro Brana M, Ruegsegger C, Rehmann R, Goswami A, Roos A, Troost D, Schneider BL, Weis J, Saxena S (2015) Marinesco-Sjogren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nat Neurosci 18(2):227–238. https://doi.org/10.1038/nn.3903
Article CAS PubMed Google Scholar
Fitzpatrick D (2001) Lower motor neuron circuits and motor control: overview. In: Purves D, Augustine GJ, Fitzpatrick D (eds) Neuroscience. NCBI Bookshelf, Bethesda
Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P (2000) Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 20(7):2534–2542. https://doi.org/10.1523/JNEUROSCI.20-07-02534.2000
Comments (0)