Clark, M. R., Mandal, M., Ochiai, K. & Singh, H. Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat. Rev. Immunol. 14, 69–80 (2014).
Article CAS PubMed Google Scholar
Mandal, M. et al. BRWD1 orchestrates epigenetic landscape of late B lymphopoiesis. Nat. Commun. 9, 3888–3902 (2018).
Article PubMed PubMed Central Google Scholar
Mandal, M. et al. Epigenetic repression of the Igk locus by STAT5-mediated recruitment of the histone methyltransferase Ezh2. Nat. Immunol. 12, 1212–1220 (2011).
Article CAS PubMed PubMed Central Google Scholar
Lu, R., Medina, K. L., Lancki, D. W. & Singh, H. IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev. 17, 1703–1708 (2003).
Article CAS PubMed PubMed Central Google Scholar
Mandal, M. et al. Histone reader BRWD1 targets and restricts recombination to the Igk locus. Nat. Immunol. 16, 1094–1103 (2015).
Article CAS PubMed PubMed Central Google Scholar
Fulton, S. L. et al. Rescue of deficits by Brwd1 copy number restoration in the Ts65Dn mouse model of Down syndrome. Nat. Commun. 13, 6384 (2022).
Article CAS PubMed PubMed Central Google Scholar
Mandal, M. et al. CXCR4 signaling directs Igk recombination and the molecular mechanisms of late B lymphopoiesis. Nat. Immunol. 20, 1393–1403 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wright, N. E., Mandal, M. & Clark, M. R. Molecular mechanisms insulating proliferation from genotoxic stress in B lymphocytes. Trends Immunol. 44, 668–677 (2023).
Article CAS PubMed Google Scholar
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
Article CAS PubMed PubMed Central Google Scholar
Teng, G. et al. RAG represents a widespread threat to the lymphocyte genome. Cell 162, 751–765 (2015).
Article CAS PubMed PubMed Central Google Scholar
Stadhouders, R. et al. Pre-B cell receptor signaling induces immunoglobulin κ locus accessibility by functional redistribution of enhancer-mediated chromatin interactions. PLoS Biol. 12, e1001791 (2014).
Article PubMed PubMed Central Google Scholar
Zhang, Y. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921 (2012).
Article CAS PubMed PubMed Central Google Scholar
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
Article CAS PubMed PubMed Central Google Scholar
Forcato, M. et al. Comparison of computational methods for Hi-C data analysis. Nat. Methods 14, 679–685 (2017).
Article CAS PubMed PubMed Central Google Scholar
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).
Article CAS PubMed PubMed Central Google Scholar
Bozek, M. & Gompel, N. Developmental transcriptional enhancers: a subtle interplay between accessibility and activity. Bioessays 42, e1900188 (2020).
Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).
Article CAS PubMed Google Scholar
Pott, S. & Lieb, J. D. What are super-enhancers? Nat. Genet. 47, 8–12 (2015).
Article CAS PubMed Google Scholar
Seo, W. & Taniuchi, I. The roles of RUNX family proteins in development of immune cells. Mol. Cells 43, 107–113 (2020).
CAS PubMed PubMed Central Google Scholar
Miller, C. H. et al. Eomes identifies thymic precursors of self-specific memory-phenotype CD8+ T cells. Nat. Immunol. 21, 567–577 (2020).
Article CAS PubMed PubMed Central Google Scholar
Gounari, F. & Khazaie, K. TCF-1: a maverick in T cell development and function. Nat. Immunol. 23, 671–678 (2022).
Article CAS PubMed PubMed Central Google Scholar
Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).
Article CAS PubMed PubMed Central Google Scholar
Merkenschlager, M. & Nora, E. P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu Rev. Genomics Hum. Genet. 17, 17–43 (2016).
Article CAS PubMed Google Scholar
Zhang, Y. et al. The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature 573, 600–604 (2019).
Article CAS PubMed PubMed Central Google Scholar
Hill, L. et al. Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion. Nature 584, 142–147 (2020).
Article CAS PubMed PubMed Central Google Scholar
Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178.e1120 (2018).
Article CAS PubMed PubMed Central Google Scholar
Dai, H. Q. et al. Loop extrusion mediates physiological Igh locus contraction for RAG scanning. Nature 590, 338–343 (2021).
Article CAS PubMed PubMed Central Google Scholar
Banigan, E. J. & Mirny, L. A. Loop extrusion: theory meets single-molecule experiments. Curr. Opin. Cell Biol. 64, 124–138 (2020).
Article CAS PubMed Google Scholar
Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).
Article CAS PubMed Google Scholar
Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707.e614 (2017).
Article CAS PubMed PubMed Central Google Scholar
Liu, N. Q. et al. WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation. Nat. Genet. 53, 100–109 (2021).
Article CAS PubMed Google Scholar
Nora, E. P. et al. Molecular basis of CTCF binding polarity in genome folding. Nat. Commun. 11, 5612 (2020).
Article CAS PubMed PubMed Central Google Scholar
Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).
Article CAS PubMed Google Scholar
Karki, S. et al. Regulated capture of Vκ gene topologically associating domains by transcription factories. Cell Rep. 24, 2443–2456 (2018).
Article CAS PubMed PubMed Central Google Scholar
Yoon, S., Chandra, A. & Vahedi, G. Stripenn detects architectural stripes from chromatin conformation data using computer vision. Nat. Commun. 13, 1602 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kraft, K. et al. Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations. Nat. Cell Biol. 21, 305–310 (2019).
Comments (0)