Society of skeletal radiology position paper – recommendations for contrast use in musculoskeletal MRI: when is non-contrast imaging enough?

Behzadi AH, Zhao Y, Farooq Z, Prince MR. Immediate allergic reactions to gadolinium-based contrast agents: a systematic review and meta-analysis. Radiology. 2018;286(2):471–82.

PubMed  Google Scholar 

Lourenco A, Moy L, Baron P. Expert panel on breast imaging. ACR Appropriateness criteria breast implant evaluation. J Am Coll Radiol. 2018;15:S13–25.

PubMed  Google Scholar 

Grobner T. Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21(4):1104–8.

PubMed  Google Scholar 

American College of Radiology. Manual on contrast media. 2020.

Weinreb JC, Rodby RA, Yee J, Wang CL, Fine D, McDonald RJ, et al. Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology. 2021;298(1):28–35.

PubMed  Google Scholar 

Costelloe CM, Amini B, Madewell JE. Risks and benefits of gadolinium-based contrast-enhanced MRI. In: Seminars in ultrasound, CT and MRI. Elsevier; 2020. p. 170–82.

Google Scholar 

Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270(3):834–41.

PubMed  Google Scholar 

McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275(3):772–82.

PubMed  Google Scholar 

FDA U. FDA drug safety communication: FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warning. 2018.

Google Scholar 

Labiste CC, McElroy E, Subhawong TK, Banks JS. Systematic review: investigating the added diagnostic value of gadolinium contrast agents for osteomyelitis in the appendicular skeleton. Skeletal Radiol. 2021;1-12:1285–96.

Google Scholar 

Herregods N, Jaremko J, Baraliakos X, Dehoorne J, Leus A, Verstraete K, et al. Limited role of gadolinium to detect active sacroiliitis on MRI in juvenile spondyloarthritis. Skeletal Radiol. 2015;44:1637–46.

PubMed  Google Scholar 

Weiss PF, Xiao R, Biko DM, Johnson AM, Chauvin NA. Detection of inflammatory sacroiliitis in children with magnetic resonance imaging: is gadolinium contrast enhancement necessary? Arthritis Rheumatol. 2015;67(8):2250–6.

PubMed  PubMed Central  Google Scholar 

Kan JH, Young RS, Yu C, Hernanz-Schulman M. Clinical impact of gadolinium in the MRI diagnosis of musculoskeletal infection in children. Pediatr Radiol. 2010;40:1197–205.

PubMed  Google Scholar 

Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology. 2012;265(2):340–56.

PubMed  PubMed Central  Google Scholar 

Tang H, Ahlawat S, Fayad LM. Multiparametric MR imaging of benign and malignant bone lesions. Magn Reson Imaging Clin N Am. 2018;26(4):559–69.

PubMed  Google Scholar 

Verstraete KL, Lang P. Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol. 2000;34(3):229–46.

PubMed  Google Scholar 

Mhuircheartaigh JN, Lin Y-C, Wu JS. Bone tumor mimickers: a pictorial essay. Indian J Radiol Imaging. 2014;24(03):225–36.

PubMed  PubMed Central  Google Scholar 

Del Grande F, Tatizawa-Shiga N, Jalali Farahani S, Chalian M, Fayad LM. Chemical shift imaging: preliminary experience as an alternative sequence for defining the extent of a bone tumor. Quant Imaging Med Surg. 2014;4(3):173–80.

PubMed  PubMed Central  Google Scholar 

Dreizin D, Ahlawat S, Del Grande F, Fayad LM. Gradient-echo in-phase and opposed-phase chemical shift imaging: role in evaluating bone marrow. Clin Radiol. 2014;69(6):648–57.

PubMed  Google Scholar 

Khoo MM, Tyler PA, Saifuddin A, Padhani AR. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol. 2011;40(6):665–81.

PubMed  Google Scholar 

MacKenzie JD, Gonzalez L, Hernandez A, Ruppert K, Jaramillo D. Diffusion-weighted and diffusion tensor imaging for pediatric musculoskeletal disorders. Pediatr Radiol. 2007;37(8):781–8.

PubMed  Google Scholar 

Omoumi P. The Dixon method in musculoskeletal MRI: from fat-sensitive to fat-specific imaging. Skeletal Radiol. 2022;51(7):1365–9.

PubMed  Google Scholar 

Ma LD, Frassica FJ, McCarthy EF, Bluemke DA, Zerhouni EA. Benign and malignant musculoskeletal masses: MR imaging differentiation with rim-to-center differential enhancement ratios. Radiology. 1997;202(3):739–44.

PubMed  Google Scholar 

Ma LD, McCarthy EF, Bluemke DA, Frassica FJ. Differentiation of benign from malignant musculoskeletal lesions using MR imaging: pitfalls in MR evaluation of lesions with a cystic appearance. AJR Am J Roentgenol. 1998;170(5):1251–8.

PubMed  Google Scholar 

Sujlana P, Skrok J, Fayad LM. Review of dynamic contrast-enhanced MRI: technical aspects and applications in the musculoskeletal system. J Magn Reson Imaging. 2018;47(4):875–90.

PubMed  Google Scholar 

Vanel D, Shapeero LG, De Baere T, Gilles R, Tardivon A, Genin J, et al. MR imaging in the follow-up of malignant and aggressive soft-tissue tumors: results of 511 examinations. Radiology. 1994;190(1):263–8.

PubMed  Google Scholar 

Erlemann R, Sciuk J, Bosse A, Ritter J, Kusnierz-Glaz CR, Peters PE, et al. Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology. 1990;175(3):791–6.

PubMed  Google Scholar 

Ahmad ZY, Ahlawat S, Levin AS, Fayad LM. Bones and soft-tissue tumors: considerations for postsurgical imaging follow-up. Radiologic Clinics. 2022;60(2):327–38.

PubMed  Google Scholar 

LA FJ, Morris C, Fayad LM. Surveillance imaging in patients with tumor prostheses using anatomic and functional metal reduction MRI sequences. New York, NY: International Skeletal Society; 2017.

Google Scholar 

Gao Y, Kalbasi A, Hsu W, Ruan D, Fu J, Shao J, et al. Treatment effect prediction for sarcoma patients treated with preoperative radiotherapy using radiomics features from longitudinal diffusion-weighted MRIs. Phys Med Biol. 2020;65(17):175006.

PubMed  Google Scholar 

May DA, Good RB, Smith D, Parsons TW. MR imaging of musculoskeletal tumors and tumor mimickers with intravenous gadolinium: experience with 242 patients. Skeletal Radiol. 1997;26(1):2–15.

PubMed  Google Scholar 

Soldatos T, Ahlawat S, Montgomery E, Chalian M, Jacobs MA, Fayad LM. Multiparametric assessment of treatment response in high-grade soft-tissue sarcomas with anatomic and functional MR imaging sequences. Radiology. 2016;278(3):831–40.

PubMed  Google Scholar 

Hammer S, Uller W, Manger F, Fellner C, Zeman F, Wohlgemuth WA. Time-resolved magnetic resonance angiography (MRA) at 3.0 Tesla for evaluation of hemodynamic characteristics of vascular malformations: description of distinct subgroups. Eur Radiol. 2017;27(1):296–305.

PubMed  Google Scholar 

Fayad L, Hazirolan T, Bluemke D, Mitchell S. Vascular malformations in the extremities: emphasis on MR imaging features that guide treatment options. Skeletal Radiol. 2006;35(3):127–37.

PubMed  Google Scholar 

Del Grande F, Subhawong T, Weber K, Aro M, Mugera C, Fayad LM. Detection of soft-tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T. Radiology. 2014;271(2):499–511.

PubMed  Google Scholar 

Del Grande F, Ahlawat S, Subhangwong T, Fayad LM. Characterization of indeterminate soft tissue masses referred for biopsy: what is the added value of contrast imaging at 3.0 tesla? J Magn Reson Imaging. 2017;45(2):390–400.

PubMed  Google Scholar 

Costelloe CM, Madewell JE. An approach to undiagnosed bone tumors. In: Seminars in ultrasound, CT and MRI. Elsevier; 2021. p. 114–22.

Google Scholar 

Walker EA, Song AJ, Murphey MD. Magnetic resonance imaging of soft-tissue masses. Semin Roentgenol. 2010;45(4):277–97.

PubMed  Google Scholar 

Amini B, Murphy WA Jr, Haygood TM, Kumar R, McEnery KW, Madewell JE, et al. Gadolinium-based contrast agents improve detection of recurrent soft-tissue sarcoma at MRI. Radiology: Imaging. Cancer. 2020;2(2):e190046.

Google Scholar 

Afonso PD, Kosinski A, Spritzer C. Following unenhanced MRI assessment for local recurrence after surgical resection of mesenchymal soft tissue tumors, do additional gadolinium-enhanced images change reader confidence or diagnosis? Eur J Radiol. 2013;82(5):806–13.

Google Scholar 

Crombe A, Marcellin PJ, Buy X, Stoeckle E, Brouste V, Italiano A, et al. Soft-tissue sarcomas: assessment of MRI features correlating with histologic grade and patient outcome. Radiology. 2019;291(3):710–21.

PubMed  Google Scholar 

Ahlawat S, Fritz J, Morris CD, Fayad LM. Magnetic resonance imaging biomarkers in musculoskeletal soft tissue tumors: review of conventional features and focus on nonmorphologic imaging. J Magn Reson Imaging. 2019;50(1):11–27.

PubMed  Google Scholar 

Chou S-HS, Hippe DS, Lee AY, Scherer K, Porrino JA, Davidson DJ, et al. Gadolinium contrast enhancement improves confidence in diagnosing recurrent soft tissue sarcoma by MRI. Acad Radiol. 2017;24(5):615–22.

PubMed  Google Scholar 

Ahlawat S, Blakeley JO, Rodriguez FJ, Fayad LM. Imaging biomarkers for malignant peripheral nerve sheath tumors in neurofibromatosis type 1. Neurology. 2019;93(11):e1076–84.

PubMed  Google Scholar 

Demehri S, Belzberg A, Blakeley J, Fayad L. Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience. AJNR Am J Neuroradiol. 2014;35(8):1615–20.

PubMed  PubMed Central  Google Scholar 

Ahlawat S, Fayad LM. Imaging cellularity in benign and malignant peripheral nerve sheath tumors: utility of the “target sign” by diffusion weighted imaging. Eur J Radiol. 2018;102:195–201.

PubMed  Google Scholar 

Soldatos T, Durand DJ, Subhawong TK, Carrino JA, Chhabra A. Magnetic resonance imaging of musculoskeletal infections: systematic diagnostic assessment and key points. Acad Radiol. 2012;19(11):1434–43.

PubMed  Google Scholar 

Alaia EF, Chhabra A, Simpfendorfer CS, Cohen M, Mintz DN, Vossen JA, et al. MRI nomenclature for musculoskeletal infection. Skeletal Radiol. 2021;50(12):2319–47.

PubMed  PubMed Central  Google Scholar 

Lee YJ, Sadigh S, Mankad K, Kapse N, Rajeswaran G. Quant Imaging Med Surg. 2016;6(2):184.

PubMed Central  Google Scholar 

Jennin F, Bousson V, Parlier C, Jomaah N, Khanine V, Laredo J-D. Bony sequestrum: a radiologic review. Skeletal Radiol. 2011;40:963–75.

PubMed  Google Scholar 

Kumar Y, Khaleel M, Boothe E, Awdeh H, Wadhwa V, Chhabra A. Role of diffusion weighted imaging in musculoskeletal infections: current perspectives. Eur Radiol. 2017;27:414–23.

PubMed  Google Scholar 

Raza K, Buckley CE, Salmon M, Buckley CD. Treating very early rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2006;20(5):849–63.

Comments (0)

No login
gif