Nix S, Smith M, Vicenzino B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. J Foot Ankle Res. 2010;3:1–9.
Saltzman CL, Nawoczenski DA, Talbot KD. Measurement of the medial longitudinal arch. Arch Phys Med Rehabil. 1995;76(1):45–9.
Article PubMed CAS Google Scholar
Resch S, Ryd L, Stenström A, Johnsson K, Reynisson K. Measuring hallux valgus: a comparison of conventional radiography and clinical parameters with regard to measurement accuracy. Foot Ankle Int. 1995;16(5):267–70.
Article PubMed CAS Google Scholar
Gupta P, Kingston KA, O’Malley M, Williams RJ, Ramkumar PN. Advancements in artificial intelligence for foot and ankle surgery: a systematic review. Foot Ankle Orthopaedics. 2023;8(1):24730114221151080.
Article PubMed PubMed Central Google Scholar
van Leeuwen KG, Schalekamp S, Rutten MJ, van Ginneken B, de Rooij M. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol. 2021;31:3797–804.
Article PubMed PubMed Central Google Scholar
Regnard NE, Lanseur B, Ventre J, et al. Assessment of performances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma X-rays. Eur J Radiol. 2022;154:110447.
Canoni-Meynet L, Verdot P, Danner A, et al. Added value of an artificial intelligence solution for fracture detection in the radiologist’s daily trauma emergencies workflow. Diagn Interv Imaging. 2022;103:594–600.
Duron L, Ducarouge A, Gillibert A, et al. Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology. 2021;300(1):120–9.
Guermazi A, Tannoury C, Kompel AJ, et al. Improving radiographic fracture recognition performance and efficiency using artificial intelligence. Radiology. 2022;302(3):627–36.
Hayashi D, Kompel AJ, Ventre J, et al. Automated detection of acute appendicular skeletal fractures in pediatric patients using deep learning. Skeletal Radiol. 2022;51(11):2129–39.
Dallora AL, Anderberg P, Kvist O, Mendes E, Diaz Ruiz S, Sanmartin BJ. Bone age assessment with various machine learning techniques: a systematic literature review and meta-analysis. PLoS ONE. 2019;14(7):e0220242.
Article PubMed PubMed Central CAS Google Scholar
Nguyen T, Hermann AL, Ventre J, Ducarouge A, Pourchot A, Marty V, Regnard NE, Guermazi A. High performance for bone age estimation with an artificial intelligence solution. Diagn Interv Imaging. 2023;104(7–8):330–6.
Jensen J, Graumann O, Overgaard S, Gerke O, Lundemann M, Haubro MH, Varnum C, Bak L, Rasmussen J, Olsen LB, Rasmussen BSB. A deep learning algorithm for radiographic measurements of the hip in adults—a reliability and agreement study. Diagnostics. 2022;12(11):2597.
Article PubMed PubMed Central Google Scholar
Stotter C, Klestil T, Röder C, Reuter P, Chen K, Emprechtinger R, Hummer A, Salzlechner C, DiFranco M, Nehrer S. Deep learning for fully automated radiographic measurements of the pelvis and hip. Diagnostics. 2023;13(3):497.
Article PubMed PubMed Central Google Scholar
Simon S, Schwarz GM, Aichmair A, Frank BJH, Hummer A, DiFranco MD, Dominkus M, Hofstaetter JG. Fully automated deep learning for knee alignment assessment in lower extremity radiographs: a cross-sectional diagnostic study. Skeletal Radiol. 2022;51(6):1249–59. https://doi.org/10.1007/s00256-021-03948-9.
Pei Y, Yang W, Wei S, Cai R, Li J, Guo S. Automated measurement of hip–knee–ankle angle on the unilateral lower limb X-rays using deep learning. Phys Eng Sci Med. 2021;44:53–62.
Archer H, Reine S, Xia S, et al. Deep learning generated lower extremity radiographic measurements are adequate for quick assessment of knee angular alignment and leg length determination. Skeletal Radiol. 2023;53(5):923–33.
Pan Y, Chen Q, Chen T, et al. Evaluation of a computer-aided method for measuring the Cobb angle on chest X-rays. Eur Spine J. 2019;28:3035–43.
Wu C, Meng G, Lian J, et al. A multi-stage ensemble network system to diagnose adolescent idiopathic scoliosis. Eur Radiol. 2022;32(9):5880–9.
Article PubMed CAS Google Scholar
Yang CH, Chou KT, Chung MB, Chuang KS, Huang TC. Automatic detection of calcaneal-fifth metatarsal angle using radiograph: a computer-aided diagnosis of flat foot for military new recruits in Taiwan. PLoS ONE. 2015;10(6):e0131387.
Article PubMed PubMed Central Google Scholar
Li T, Wang Y, Qu Y, Dong R, Kang M, Zhao J. Feasibility study of hallux valgus measurement with a deep convolutional neural network based on landmark detection. Skeletal Radiol. 2022;51(6):1235–47. https://doi.org/10.1007/s00256-021-03939-w.
Article PubMed CAS Google Scholar
Kao EF, Lu CY, Wang CY, Yeh WC, Hsia PK. Fully automated determination of arch angle on weight-bearing foot radiograph. Comput Methods Programs Biomed. 2018;154:79–88.
Benchoufi M, Matzner-Lober E, Molinari N, Jannot AS, Soyer P. Interobserver agreement issues in radiology. Diagn Interv Imaging. 2020;101(10):639–41.
Article PubMed CAS Google Scholar
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.
Article PubMed PubMed Central Google Scholar
Nery C, Coughlin MJ, Baumfeld D, Ballerini FJ, Kobata S. Hallux valgus in males–part 1: demographics, etiology, and comparative radiology. Foot Ankle Int. 2013;34(5):629–35. https://doi.org/10.1177/1071100713475350.
Comments (0)