Lelubre, C., and J.L. Vincent. 2018. Mechanisms and treatment of organ failure in sepsis. Nature Reviews. Nephrology 14 (7): 417–427.
Opal, S.M., P.F. Laterre, B. Francois, S.P. LaRosa, D.C. Angus, J.P. Mira, X. Wittebole, T. Dugernier, D. Perrotin, M. Tidswell, et al. 2013. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial. JAMA 309 (11): 1154–1162.
Article CAS PubMed Google Scholar
Rice, T.W., A.P. Wheeler, G.R. Bernard, J.L. Vincent, D.C. Angus, N. Aikawa, I. Demeyer, S. Sainati, N. Amlot, C. Cao, et al. 2010. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Critical Care Medicine 38 (8): 1685–1694.
Article CAS PubMed Google Scholar
Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526 (7575): 666–671.
Article CAS PubMed Google Scholar
Kayagaki, N., M.T. Wong, I.B. Stowe, S.R. Ramani, L.C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W.P. Lee, A. Muszynski, et al. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341 (6151): 1246–1249.
Article CAS PubMed Google Scholar
Vanaja, S.K., A.J. Russo, B. Behl, I. Banerjee, M. Yankova, S.D. Deshmukh, and V.A.K. Rathinam. 2016. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165 (5): 1106–1119.
Article CAS PubMed PubMed Central Google Scholar
Kutuzova, G.D., R.M. Albrecht, C.M. Erickson and N. 2001. Qureshi Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells. Journal of Immunolog 167 (1): 482–489.
Deng, M., Y. Tang, W. Li, X. Wang, R. Zhang, X. Zhang, X. Zhao, J. Liu, C. Tang, Z. Liu, et al. 2018. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity 49 (4): 740–753 e747.
Kopp, F., S. Kupsch, and A.B. Schromm. 2016. Lipopolysaccharide-binding protein is bound and internalized by host cells and colocalizes with LPS in the cytoplasm: Implications for a role of lbp in intracellular LPS-signaling. Biochimica et Biophysica Acta 1863 (4): 660–672.
Article CAS PubMed Google Scholar
Gabarin, R.S., M. Li, P.A. Zimmel, J.C. Marshall, Y. Li, and H. Zhang. 2021. Intracellular and extracellular lipopolysaccharide signaling in sepsis: Avenues for novel therapeutic strategies. Journal of Innate Immunity 13 (6): 323–332.
Article CAS PubMed PubMed Central Google Scholar
Sciacchitano, S., L. Lavra, A. Morgante, A. Ulivieri, F. Magi, G.P. De Francesco, C. Bellotti, L.B. Salehi and A. Ricci. 2018. Galectin-3: one molecule for an alphabet of diseases, from A to Z. International Journal of Molecular Sciences 19 (2).
Wang, F., L. Zhou, A. Eliaz, C. Hu, X. Qiang, L. Ke, G. Chertow, I. Eliaz, and Z. Peng. 2023. The potential roles of galectin-3 in AKI and CKD. Frontiers in Physiology 14: 1090724.
Article PubMed PubMed Central Google Scholar
Hong, M.H., I.C. Weng, F.Y. Li, W.H. Lin, and F.T. Liu. 2021. Intracellular galectins sense cytosolically exposed glycans as danger and mediate cellular responses. Journal of Biomedical Science 28 (1): 16.
Article CAS PubMed PubMed Central Google Scholar
Lo, T.H., H.L. Chen, C.I. Yao, I.C. Weng, C.S. Li, C.C. Huang, N.J. Chen, C.H. Lin and F.T. Liu. 2021. Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycans. The Proceedings of the National Academy of Sciences U S A 118 (30).
Prud’homme, M., M. Coutrot, T. Michel, L. Boutin, M. Genest, F. Poirier, J.M. Launay, B. Kane, S. Kinugasa, N. Prakoura, et al. 2019. Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci 4 (6): 717–732.
Article PubMed PubMed Central Google Scholar
Sun, H., H. Jiang, A. Eliaz, J.A. Kellum, Z. Peng, and I. Eliaz. 2021. Galectin-3 in septic acute kidney injury: A translational study. Critical Care 25 (1): 109.
Article PubMed PubMed Central Google Scholar
Lakshminarayan, R., C. Wunder, U. Becken, M.T. Howes, C. Benzing, S. Arumugam, S. Sales, N. Ariotti, V. Chambon, C. Lamaze, et al. 2014. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature Cell Biology 16 (6): 595–606.
Article CAS PubMed Google Scholar
Pugliese, G., F. Pricci, C. Iacobini, G. Leto, L. Amadio, P. Barsotti, L. Frigeri, D.K. Hsu, H. Vlassara, F.T. Liu, et al. 2001. Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. The FASEB Journal 15 (13): 2471–2479.
Article CAS PubMed Google Scholar
Peng, Z.Y., H.Z. Wang, N. Srisawat, X. Wen, T. Rimmele, J. Bishop, K. Singbartl, R. Murugan, and J.A. Kellum. 2012. Bactericidal antibiotics temporarily increase inflammation and worsen acute kidney injury in experimental sepsis. Critical Care Medicine 40 (2): 538–543.
Article CAS PubMed Google Scholar
Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, et al. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315 (8): 801–810.
Article CAS PubMed PubMed Central Google Scholar
Rahkila, J., F.S. Ekholm, A. Arda, S. Delgado, J. Savolainen, J. Jimenez-Barbero, and R. Leino. 2019. Novel dextran-supported biological probes decorated with disaccharide entities for investigating the carbohydrate-protein interactions of gal-3. ChemBioChem 20 (2): 203–209.
Article CAS PubMed Google Scholar
Cui, Y., N.N. Zhang, D. Wang, W.H. Meng, and H.S. Chen. 2022. Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome activation via TLR4/NF-kB signaling pathway in microglia. Journal of Inflammation Research 15: 3369–3385.
Article PubMed PubMed Central Google Scholar
Aits, S., J. Kricker, B. Liu, A.M. Ellegaard, S. Hamalisto, S. Tvingsholm, E. Corcelle-Termeau, S. Hogh, T. Farkas, A. Holm Jonassen, et al. 2015. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy 11 (8): 1408–1424.
Article CAS PubMed PubMed Central Google Scholar
Jia, J., A. Claude-Taupin, Y. Gu, S.W. Choi, R. Peters, B. Bissa, M.H. Mudd, L. Allers, S. Pallikkuth, K.A. Lidke, et al. 2020. Galectin-3 coordinates a cellular system for lysosomal repair and removal. Developmental Cell 52 (1): 69–87 e68.
Feeley, E.M., D.M. Pilla-Moffett, E.E. Zwack, A.S. Piro, R. Finethy, J.P. Kolb, J. Martinez, I.E. Brodsky, and J. Coers. 2017. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc Natl Acad Sci U S A 114 (9): E1698–E1706.
Article CAS PubMed PubMed Central Google Scholar
Zhao, Y., and F. Shao. 2016. Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Current Opinion in Microbiology 29: 37–42.
Ferrer, M.F., E. Scharrig, N. Charo,A.L. Ripodas, R. Drut, E.A. Carrera Silva, A. Nagel, J.E. Nally, D.P. Montes de Oca, M. Schattner, et al. 2018. Macrophages and galectin 3 control bacterial burden in acute and subacute murine leptospirosis that determines chronic kidney fibrosis. Frontiers in Cellular and Infection Microbiology 8: 384.
da Silva, A.A., T.L. Teixeira, S.C. Teixeira, F.C. Machado, M.A. Dos Santos, T.C. Tomiosso, P.C.B. Tavares, R. Brigido, F.A. Martins, N.S.L. Silva, et al. 2017. Galectin-3: A friend but not a foe during trypanosoma cruzi experimental infection. Frontiers in Cellular and Infection Microbiology 7: 463.
Article PubMed PubMed Central Google Scholar
Ferreira, R.G., L.C. Rodrigues, D.C. Nascimento, A. Kanashiro, P.H. Melo, V.F. Borges, A. Gozzi, Prado D. da Silva, M.C. Borges, F.S. Ramalho, et al. 2018. Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. Journal of Infection 77 (5): 391–397.
Mackinnon, A.C., M.A. Gibbons, S.L. Farnworth, H. Leffler, U.J. Nilsson, T. Delaine, A.J. Simpson, S.J. Forbes, N. Hirani, J. Gauldie, et al. 2012. Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. American Journal of Respiratory and Critical Care Medicine 185 (5): 537–546.
Article CAS PubMed PubMed Central Google Scholar
Martinez-Martinez, E., C. Brugnolaro, J. Ibarrola, S. Ravassa, M. Buonafine, B. Lopez, A. Fernandez-Celis, R. Querejeta, E. Santamaria, J. Fernandez-Irigoyen, et al. 2019. CT-1 (cardiotrophin-1)-Gal-3 (galectin-3) axis in cardiac fibrosis and inflammation. Hypertension 73 (3): 602–611.
Article CAS PubMed Google Scholar
Henderson, N.C., A.C. Mackinnon, S.L. Farnworth, T. Kipari, C. Haslett, J.P. Iredale, F.T. Liu, J. Hughes, and T. Sethi. 2008. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. American Journal of Pathology 172 (2): 288–298.
Article CAS PubMed PubMed Central Google Scholar
Schroeder, J.T., A.A. Adeosun, and A.P. Bieneman. 2020. Epithelial cell-associated galectin-3 activates human dendritic cell subtypes for pro-inflammatory cytokines. Frontiers in Immunology 11: 524826.
Article CAS PubMed PubMed Central Google Scholar
Caniglia, J.L., M.R. Guda, S. Asuthkar, A.J. Tsung, and K.K. Velpula. 2020. A potential role for galectin-3 inhibitors in the treatment of COVID-19. PeerJ 8: e9392.
Article PubMed PubMed Central Google Scholar
Iacobini, C., L. Amadio, G. Oddi, C. Ricci, P. Barsotti, S. Missori, M. Sorcini, U. Di Mario, F. Pricci, and G. Pugliese. 2003. Role of galectin-3 in diabetic nephropathy. Journal of the American Society of Nephrology 14 (8 Suppl 3): S264-270.
Article CAS PubMed Google Scholar
Sano, H., D.K. Hsu, J.R. Apgar, L. Yu, B.B. Sharma, I. Kuwabara, S. Izui, and F.T. Liu. 2003. Critical role of galectin-3 in phagocytosis by macrophages. The Journal of Clinical Investigation 112 (3): 389–397.
Article CAS PubMed PubMed Central Google Scholar
Nomura, K., A. Vilalta, D.H. Allendorf, T.C. Hornik, and G.C. Brown. 2017. Activated microglia desialylate and phagocytose cells via neuraminidase, galectin-3, and mer tyrosine kinase. The Journal of Immunology 198 (12): 4792–4801.
Comments (0)