Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).
Article CAS PubMed PubMed Central Google Scholar
Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).
Article CAS PubMed Google Scholar
Green, J. L., Bohannan, B. J. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1043 (2008).
Article CAS PubMed Google Scholar
Vasar, M. et al. Global soil microbiomes: a new frontline of biome‐ecology research. Glob. Ecol. Biogeogr. 31, 1120–1132 (2022).
Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018).
Article CAS PubMed Google Scholar
Dickey, J. R. et al. The utility of macroecological rules for microbial biogeography. Front. Ecol. Evol. 9, 633155 (2021).
Treseder, K. K. & Lennon, J. T. Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 9, 243–262 (2015).
Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).
Article CAS PubMed Google Scholar
Steidinger, B. S. et al. Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. J. Biogeogr. 47, 772–782 (2020).
Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).
Sulman, B. N. et al. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).
Wubs, E. J., Van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016).
Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).
Article PubMed PubMed Central Google Scholar
Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M. & Standish, R. J. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol. 40, 140–149 (2019).
Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).
Article CAS PubMed Google Scholar
Wu, B. et al. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10, 127–140 (2019).
Article PubMed PubMed Central Google Scholar
Meiser, A., Balint, M. & Schmitt, I. Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. New Phytol. 201, 623–635 (2014).
Article CAS PubMed Google Scholar
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
Article CAS PubMed Google Scholar
Zimmerman, N. B. & Vitousek, P. M. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc. Natl Acad. Sci. USA 109, 13022–13027 (2012).
Article CAS PubMed PubMed Central Google Scholar
Barge, E. G., Leopold, D. R., Peay, K. G., Newcombe, G. & Busby, P. E. Differentiating spatial from environmental effects on foliar fungal communities of Populus trichocarpa. J. Biogeogr. 46, 2001–2011 (2019).
Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).
Article PubMed PubMed Central Google Scholar
Davison, J. et al. Temperature and pH define the realized niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).
Article CAS PubMed Google Scholar
Talbot, J. M. et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl Acad. Sci. USA 111, 6341–6346 (2014).
Article CAS PubMed PubMed Central Google Scholar
Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98, 1757–1763 (2017).
Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).
Article CAS PubMed Google Scholar
Bruns, T. & Taylor, J. Comment on ‘Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism’. Science 351, 826 (2016).
Article CAS PubMed Google Scholar
van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).
Anagnostakis, S. L. Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79, 23–37 (1987).
Mortenson, L. A. et al. Assessing spatial distribution, stand impacts and rate of Ceratocystis fimbriata induced ‘ōhi ‘a (Metrosideros polymorpha) mortality in a tropical wet forest, Hawai‘i Island, USA. For. Ecol. Manag. 377, 83–92 (2016).
Grünwald, N. J., Garbelotto, M., Goss, E. M., Heungens, K. & Prospero, S. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol. 20, 131–138 (2012).
Marchetti, S. B., Worrall, J. J. & Eager, T. Secondary insects and diseases contribute to sudden aspen decline in southwestern Colorado, USA. Can. J. For. Res. 41, 2315–2325 (2011).
Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235–246 (2001).
Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).
Afkhami, M. E., McIntyre, P. J. & Strauss, S. Y. Mutualist‐mediated effects on species’ range limits across large geographic scales. Ecol. Lett. 17, 1265–1273 (2014).
Van Nuland, M. E. & Peay, K. G. Symbiotic niche mapping reveals functional specialization by two ectomycorrhizal fungi that expands the host plant niche. Fungal Ecol. 46, 100960 (2020).
Maynard, D. S. et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat. Microbiol. 4, 846–853 (2019).
Article CAS PubMed Google Scholar
Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).
Article CAS PubMed Google Scholar
Braatne, J. H., Rood, S. B. & Heilman, P. E. Life history, ecology, and conservation of riparian cottonwoods in North America. in Biology of Populus and Its Implications for Management and Conservation (eds Stattler, R. F. et al.) 57–85 (NRC Research Press, 1996).
Sannigrahi, P., Ragauskas, A. J. & Tuskan, G. A. Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels, Bioprod. Biorefin. 4, 209–226 (2010).
Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).
Article CAS PubMed Google Scholar
Hacquard, S. & Schadt, C. W. Towards a holistic understanding of the beneficial interactions across the Populus microbiome. New Phytol. 205, 1424–1430 (2015).
Whitham, T. G. et al. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84, 559–573 (2003).
Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos. Trans. R. Soc. B 364, 1629–1640 (2009).
Comments (0)