Synthesis of new non-natural l-glycosidic flavonoid derivatives and their evaluation as inhibitors of Trypanosoma cruzi ecto-nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase1)

Chagas C (1909) Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1:159–218. https://doi.org/10.1590/S0074-02761909000200008

Article  Google Scholar 

Nguyen T, Waseem M (2020) Chagas disease, 1st edn. StatPearls Publishing, New York

Google Scholar 

Rassi A, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402. https://doi.org/10.1016/S0140-6736(10)60061-X

Article  PubMed  Google Scholar 

Guarner J (2019) Chagas disease as example of a reemerging parasite. Semin Diagn Pathol 36:164–169. https://doi.org/10.1053/j.semdp.2019.04.008

Article  PubMed  Google Scholar 

Antinori S, Galimberti L, Bianco R et al (2017) Chagas disease in Europe: a review for the internist in the globalized world. Eur J Intern Med 43:6–15. https://doi.org/10.1016/j.ejim.2017.05.001

Article  PubMed  Google Scholar 

WHO (2023) Tratament of Chagas disease. In: World Heal. Organ. https://www.who.int/health-topics/chagas-disease#tab=tab_3. Accessed 7 Aug 2023

WHO (2023) Chagas disease (American trypanosomiasis). https://www.who.int/health-topics/chagas-disease#tab=tab_1. Accessed 7 Aug 2023

Rodrigues Coura J, De Castro SL (2002) A critical review on chagas disease chemotherapy. Mem Inst Oswaldo Cruz 97:3–24. https://doi.org/10.1590/S0074-02762002000100001

Article  Google Scholar 

Ribeiro V, Dias N, Paiva T et al (2020) Current trends in the pharmacological management of Chagas disease. Int J Parasitol Drugs Drug Resist 12:7–17. https://doi.org/10.1016/j.ijpddr.2019.11.004

Article  PubMed  Google Scholar 

Kirchhoff LV (2000) American trypanosomiasis (Chagas’ disease). Gastroenterol Clin North Am 25:517–533. https://doi.org/10.1016/S0889-8553(05)70261-2

Article  Google Scholar 

Kratz JM (2019) Drug discovery for chagas disease : a viewpoint. Acta Trop 198:1–5. https://doi.org/10.1016/j.actatropica.2019.105107

Article  CAS  Google Scholar 

Kratz JM, Bournissen FG, Forsyth CJ, Forsyth CJ (2018) Expert Review of Clinical Pharmacology Clinical and pharmacological profile of benznidazole for treatment of Chagas disease. Expert Rev Clin Pharmacol 11:943–957. https://doi.org/10.1080/17512433.2018.1509704

Article  CAS  PubMed  Google Scholar 

Sueth-Santiago V, Decote-Ricardo D, Morrot A et al (2017) Challenges in the chemotherapy of Chagas disease: looking for possibilities related to the differences and similarities between the parasite and host. World J Biol Chem 8:57. https://doi.org/10.4331/wjbc.v8.i1.57

Article  PubMed  PubMed Central  Google Scholar 

Morillo CA, Marin-Neto JA, Avezum A et al (2015) Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 373:1295–1306. https://doi.org/10.1056/NEJMoa1507574

Article  CAS  PubMed  Google Scholar 

Cardoso CS, Ribeiro ALP, Oliveira CDL et al (2018) Beneficial effects of benznidazole in Chagas disease : NIH SaMi-Trop cohort study. PLoS Negl Trop Dis 37:1–12. https://doi.org/10.1371/journal.pntd.0006814

Article  CAS  Google Scholar 

Fietto JLR, DeMarco R, Nascimento IP et al (2004) Characterization and immunolocalization of an NTP diphosphohydrolase of Trypanosoma cruzi. Biochem Biophys Res Commun 316:454–460. https://doi.org/10.1016/j.bbrc.2004.02.071

Article  CAS  PubMed  Google Scholar 

Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430. https://doi.org/10.1007/s11302-006-9003-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Handa M, Guidotti G (1996) Purification and cloning of a soluble ATP-diphosphohydrolase (Apyrase) from potato tubers (Solanum tuberosum). Biochem Biophys Res Commun 218:916–923. https://doi.org/10.1006/bbrc.1996.0162

Article  CAS  PubMed  Google Scholar 

Vasconcellos RDS, Mariotini-Moura C, Gomes RS et al (2014) Leishmania infantum ecto-nucleoside triphosphate diphosphohydrolase-2 is an apyrase involved in macrophage infection and expressed in infected dogs. PLoS Negl Trop Dis 8. https://doi.org/10.1371/journal.pntd.0003309

Drosopoulos JHF, Broekman MJ, Islam N et al (2000) Site-directed mutagenesis of human endothelial cell ecto-ADPase/soluble CD39 : requirement of glutamate 174 and serine 218 for enzyme activity and inhibition of platelet recruitment †. Biochemistry 39:6936–6943

Article  CAS  PubMed  Google Scholar 

Grinthal A, Guidotti G (2000) Articles substitution of His59 converts CD39 apyrase into an ADPase in a quaternary structure dependent manner †. Biochemistry 39:9–16

Article  CAS  PubMed  Google Scholar 

Smith TM, Carl SAL, Kirley TL (1999) Mutagenesis of two conserved tryptophan residues of the E-type ATPases : inactivation and conversion of an ecto-apyrase to an ecto-NTPase †. Biochemistry 38:5849–5857

Article  CAS  PubMed  Google Scholar 

Smith TM, Kirley TL (1999) Site-directed mutagenesis of a human brain ecto-apyrase : evidence that the E-type ATPases are related to the actin/heat shock 70/sugar kinase. Biochemistry 38:321–328

Article  CAS  PubMed  Google Scholar 

Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309. https://doi.org/10.1007/s002100000309

Article  CAS  PubMed  Google Scholar 

Zimmermann H (2021) Ectonucleoside triphosphate diphosphohydrolases and ecto-5 ′ -nucleotidase in purinergic signaling : how the field developed and where we are now. Purinergic Signal 17:117–125

Article  CAS  PubMed  Google Scholar 

Sansom FM, Robson SC, Hartland EL (2008) Possible effects of microbial ecto-nucleoside triphosphate diphosphohydrolases on host-pathogen interactions. Microbiol Mol Biol Rev 72:765–781. https://doi.org/10.1128/mmbr.00013-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sansom FM (2012) The role of the NTPDase enzyme family in parasites : what do we know , and where to from here ? Parasitology 139:963–980. https://doi.org/10.1017/S003118201200025X

Article  CAS  PubMed  Google Scholar 

da Silva W, da Rocha Torres N, de Melo Agripino J et al (2020) ENTPDases from pathogenic trypanosomatids and purinergic signaling: shedding light towards Biotechnological Applications. Curr Top Med Chem 20:1–14. https://doi.org/10.2174/1568026620666201005125146

Article  CAS  Google Scholar 

Meyer-Fernandes JR, Saad-Nehme J, Peres-Sampaio CE et al (2004) A Mg-dependent ecto-ATPase is increased in the infective stages of Trypanosoma cruzi. Parasitol Res 93:41–50. https://doi.org/10.1007/s00436-003-1066-4

Article  PubMed  Google Scholar 

Santos RF, Pôssa MAS, Bastos MS et al (2009) Influence of ecto-nucleoside triphosphate diphosphohydrolase activity on Trypanosoma cruzi infectivity and virulence. PLoS Negl Trop Dis 3. https://doi.org/10.1371/journal.pntd.0000387

Silva-Gomes NL, Ennes-Vidal V, Carolo JCF et al (2014) Nucleoside triphosphate diphosphohydrolase1 (TcNTPDase-1) gene expression is increased due to heat shock and in infective forms of Trypanosoma cruzi. Parasites and Vectors 7:1–6. https://doi.org/10.1186/s13071-014-0463-0

Article  CAS  Google Scholar 

Silva-gomes NL, De CR, Rampazzo P et al (2020) Knocking down TcNTPDase-1 gene reduces in vitro infectivity of Trypanosoma cruzi knockout and overexpression of the. Front Microbiol 11:1–12. https://doi.org/10.3389/fmicb.2020.00434

Article  Google Scholar 

Mariotini-Moura C, Bastos MS, de Castro FF et al (2014) Trypanosoma cruzi nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase-1) biochemical characterization, immunolocalization and possible role in host cell adhesion. Acta Trop 130:140–147. https://doi.org/10.1016/j.actatropica.2013.11.008

Article  CAS  PubMed  Google Scholar 

Paes-vieira L, Gomes-vieira LA, Meyer-Fernandes JR (2021) E-NTPDases : possible roles on host-parasite interactions and therapeutic opportunities. Front Cell Infect Microbiol 11:1–11. https://doi.org/10.3389/fcimb.2021.769922

Article  CAS  Google Scholar 

Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5. https://doi.org/10.1017/jns.2016.41

Salehi B, Machin L, Monzote L et al (2020) Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega 5:11849–11872. https://doi.org/10.1021/acsomega.0c01818

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’Andrea G (2015) Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia 106:256–271. https://doi.org/10.1016/j.fitote.2015.09.018

Article  CAS  PubMed  Google Scholar 

Li Y, Yao J, Han C et al (2016) Quercetin, inflammation and immunity. Nutrients 8:1–14. https://doi.org/10.3390/nu8030167

Article  CAS  Google Scholar 

Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abbaszadeh S, Rashidipour M, Khosravi P et al (2020) Biocompatibility, cytotoxicity, antimicrobial and epigenetic effects of novel chitosan-based quercetin nanohydrogel in human cancer cells. Int J Nanomedicine 15:5963–5975. https://doi.org/10.2147/IJN.S263013

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif