Mannello F, Luchetti F, Falcieri E, Papa S. Multiple roles of matrix metalloproteinases during apoptosis. Apoptosis. 2005;10(1):19–24.
Article CAS PubMed Google Scholar
Soleimani Z, Kheirkhah D, Sharif MR, Sharif A, Karimian M, Aftabi Y. Association of CCND1 Gene c. 870G> A polymorphism with breast cancer risk: A case-controlstudy and a meta-analysis. Pathology & Oncology Research. 2017;23:621–31.
Safabakhsh M, Imani H, Shab-Bidar S. Higher dietary total antioxidant capacity is not associated with risk of breast cancer in Iranian women. Breast Cancer. 2020;27(4):652–61.
Hojilla C, Mohammed F, Khokha R. Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer. 2003;89(10):1817–21.
Article CAS PubMed PubMed Central Google Scholar
Folgueras AR, Pendas AM, Sánchez LM, Lopez-Otin C. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol. 2004;48(5–6):411–24.
Article CAS PubMed Google Scholar
Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene. 2002;21(14):2245–52.
Article CAS PubMed Google Scholar
Woessner JF, Woessner JF, Nagase H. Matrix metalloproteinases and TIMPs. Oxford University Press; 2000.
Jiang Y, Wang M, Çeliker MY, Liu YE, Amy Sang QX, Goldberg ID, et al. Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Can Res. 2001;61(6):2365–70.
Guedez L, McMarlin AJ, Kingma DW, Bennett TA, Stetler-Stevenson M, Stetler-Stevenson WG. Tissue inhibitor of metalloproteinase-1 alters the tumorigenicity of Burkitt’s lymphoma via divergent effects on tumor growth and angiogenesis. Am J Pathol. 2001;158(4):1207–15.
Article CAS PubMed PubMed Central Google Scholar
Murphy AN, Unsworth EJ, Stetler-Stevenson WG. Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J Cell Physiol. 1993;157(2):351–8.
Article CAS PubMed Google Scholar
Gu X, Fu M, Ding Y, Ni H, Zhang W, Zhu Y, et al. TIMP-3 expression associates with malignant behaviors and predicts favorable survival in HCC. PLoS ONE. 2014;9(8): e106161.
Article PubMed PubMed Central Google Scholar
Su CW, Huang YW, Chen MK, Su SC, Yang SF, Lin CW. Polymorphisms and plasma levels of tissue inhibitor of metalloproteinase-3: impact on genetic susceptibility and clinical outcome of oral cancer. Medicine. 2015;94(46):PMC4652830.
Wu D-W, Tsai L-H, Chen P-M, Lee M-C, Wang L, Chen C-Y, et al. Loss of TIMP-3 promotes tumor invasion via elevated IL-6 production and predicts poor survival and relapse in HPV-infected non–small cell lung cancer. Am J Pathol. 2012;181(5):1796–806.
Article CAS PubMed Google Scholar
Yu JL, Lv P, Han J, Zhu X, Hong LL, Zhu WY, Wang XB, Wu YC, Li P, Ling ZQ. Methylated TIMP-3 DNA in body fluids is an independent prognostic factor for gastric cancer. Arch Pathol Lab Med. 2014;138(11):1466–73.
Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152(6):1237–51.
Article CAS PubMed PubMed Central Google Scholar
Darnton SJ, Hardie LJ, Muc RS, Wild CP, Casson AG. Tissue inhibitor of metalloproteinase-3 (TIMP-3) gene is methylated in the development of esophageal adenocarcinoma: loss of expression correlates with poor prognosis. Int J Cancer. 2005;115(3):351–8.
Article CAS PubMed Google Scholar
Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et biophysica acta (BBA-) molecular cell research. 2010;1803(1):55–71.
Article CAS PubMed Google Scholar
Yu W-H, Shuan-su CY, Meng Q, Brew K, Woessner JF. TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem. 2000;275(40):31226–32.
Article CAS PubMed Google Scholar
Wang K, Wang G, Huang S, Luo A, Jing X, Li G, et al. Association between TIMP-2 gene polymorphism and breast cancer in Han Chinese women. BMC Cancer. 2019;19(1):446.
Article PubMed PubMed Central Google Scholar
Peterson NB, Beeghly-Fadiel A, Gao YT, Long J, Cai Q, Shu XO, et al. Polymorphisms in tissue inhibitors of metalloproteinases-2 and -3 and breast cancer susceptibility and survival. Int J Cancer. 2009;125(4):844–50.
Article CAS PubMed PubMed Central Google Scholar
Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 2005;9(2):267–85.
Article CAS PubMed PubMed Central Google Scholar
Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Mon Int Med J Exp Clin Res. 2009;15(2):32–40.
Roberts LM, Visser JA, Ingraham HA. Involvement of a matrix metalloproteinase in MIS-induced cell death during urogenital development. Development (Cambridge, England). 2002;129(6):1487–96.
Article CAS PubMed Google Scholar
Jezierska A, Matysiak W, Motyl T. ALCAM/CD166 protects breast cancer cells against apoptosis and autophagy. Med Sci Mon Int Med J Exp Clin Res. 2006;12(8):Br263–73.
Jezierska A, Olszewski WP, Pietruszkiewicz J, Olszewski W, Matysiak W, Motyl T. Activated Leukocyte Cell Adhesion Molecule (ALCAM) is associated with suppression of breast cancer cells invasion. Medical science monitor : international medical journal of experimental and clinical research. 2006;12(7):Br245–56.
Hu YB, Li DG, Lu HM. Modified synthetic siRNA targeting tissue inhibitor of metalloproteinase-2 inhibits hepatic fibrogenesis in rats. J Gene Med. 2007;9(3):217–29.
Article CAS PubMed Google Scholar
Su CW, Lin CW, Yang WE, Yang SF. TIMP-3 as a therapeutic target for cancer. Therap Adv Med Oncol. 2019;11:1758835919864247.
Karimian M, Behjati M, Barati E, Ehteram T, Karimian A. CYP1A1 and GSTs common gene variations and presbycusis risk: a genetic association analysis and a bioinformatics approach. Environ Sci Pollut Res Int. 2020;27(34):42600–10.
Article CAS PubMed Google Scholar
Karimian M, Momeni A, Farmohammadi A, Behjati M, Jafari M, Raygan F. Common gene polymorphism in ATP-binding cassette transporter A1 and coronary artery disease: a genetic association study and a structural analysis. J Cell Biochem. 2020;121(5–6):3345–57.
Article CAS PubMed Google Scholar
Bafrani HH, Ahmadi M, Jahantigh D, Karimian M. Association analysis of the common varieties of IL17A and IL17F genes with the risk of knee osteoarthritis. J Cell Biochem. 2019;120(10):18020–30.
Article CAS PubMed Google Scholar
Mobasseri N, Nikzad H, Karimian M. Protective effect of oestrogen receptor α-PvuII transition against idiopathic male infertility: a case-control study and meta-analysis. Reprod Biomed Online. 2019;38(4):588–98.
Article CAS PubMed Google Scholar
Noureddini M, Mobasseri N, Karimian M, Behjati M, Nikzad H. Arg399Gln substitution in XRCC1 as a prognostic and predictive biomarker for prostate cancer: evidence from 8662 subjects and a structural analysis. J Gene Med. 2018;20(10–11): e3053.
Karimian M, Aftabi Y, Mazoochi T, Babaei F, Khamechian T, Boojari H, et al. Survivin polymorphisms and susceptibility to prostate cancer: a genetic association study and an in silico analysis. EXCLI J. 2018;17:479–91.
PubMed PubMed Central Google Scholar
Zamani-Badi T, Nikzad H, Karimian M. IL-1RA VNTR and IL-1α 4845G>T polymorphisms and risk of idiopathic male infertility in Iranian men: a case-control study and an in silico analysis. Andrologia. 2018;50(9): e13081.
Ebrahimi A, Hosseinzadeh Colagar A, Karimian M. Association of human methionine synthase-A2756G transition with prostate cancer: a case-control study and in silico analysis. Acta Med Iran. 2017;55(5):297–303.
Karimian M, Nikzad H, Azami-Tameh A, Taherian A, Darvishi FZ, Haghighatnia MJ. SPO11-C631T gene polymorphism: association with male infertility and an in silico-analysis. J Family Reprod Health. 2015;9(4):155–63.
PubMed PubMed Central Google Scholar
Karimian M, Ghazaey Zidanloo S, Jahantigh D. Influence of FOXP3 gene polymorphisms on the risk of preeclampsia: a meta-analysis and a bioinformatic approach. Clin Exp Hypertens. 2022;44(3):280–90.
Comments (0)