Sirtuin 6 ameliorates arthritis through modulating cyclic AMP-responsive element binding protein/CCN1/cyclooxygenase 2 pathway in osteoblasts

Emre Y, Imhof BA (2014) Matricellular protein CCN1/CYR61: a new player in inflammation and leukocyte trafficking. Semin Immunopathol 36:253–259

Article  CAS  PubMed  Google Scholar 

Xu T, He YH, Wang MQ, Yao HW, Ni MM, Zhang L, Meng XM, Huang C, Ge YX, Li J (2016) Therapeutic potential of cysteine-rich protein 61 in rheumatoid arthritis. Gene 592:179–185

Article  CAS  PubMed  Google Scholar 

Kok SH, Hou KL, Hong CY, Wang JS, Liang PC, Chang CC, Hsiao M, Yang H, Lai EH, Lin SK (2011) Simvastatin inhibits cytokine-stimulated Cyr61 expression in osteoblastic cells: a therapeutic benefit for arthritis. Arthritis Rheum 63:1010–1020

Article  CAS  PubMed  Google Scholar 

Kok SH, Lin LD, Hou KL, Hong CY, Chang CC, Hsiao M, Wang JH, Lai EH, Lin SK (2013) Simvastatin inhibits cysteine-rich protein 61 expression in rheumatoid arthritis synovial fibroblasts through the regulation of sirtuin-1/FoxO3a signaling. Arthritis Rheum 65:639–649

Article  CAS  PubMed  Google Scholar 

Yang Y, Zhu M, Liang J, Wang H, Sun D, Li H, Chen L (2022) SIRT6 mediates multidimensional modulation to maintain organism homeostasis. J Cell Physiol 237:3205–3221

Article  CAS  PubMed  Google Scholar 

Liu G, Chen H, Liu H, Zhang W, Zhou J (2021) Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev 41:1089–1137

Article  PubMed  Google Scholar 

Lee HS, Ka SO, Lee SM, Lee SI, Park JW, Park BH (2013) Overexpression of sirtuin 6 suppresses inflammatory responses and bone destruction in mice with collagen-induced arthritis. Arthritis Rheum 65:1776–1785

Article  CAS  PubMed  Google Scholar 

Hou KL, Lin SK, Chao LH, Lai EH, Chang CC, Shun CT, Lu WY, Wang JH, Hsiao M, Hong CY, Kok SH (2017) Sirtuin 6 suppresses hypoxia-induced inflammatory response in human osteoblasts via inhibition of reactive oxygen species production and glycolysis-A therapeutic implication in inflammatory bone resorption. BioFactors 43:170–180

Article  CAS  PubMed  Google Scholar 

Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falchuk KH, Goetzl EJ, Kulka JP (1970) Respiratory gases of synovial fluids. An approach to synovial tissue circulatory-metabolic imbalance in rheumatoid arthritis. Am J Med 49:223–231

Article  CAS  PubMed  Google Scholar 

Lund-Olesen K (1970) Oxygen tension in synovial fluids. Arthritis Rheum 13:769–776

Article  CAS  PubMed  Google Scholar 

Meyuhas R, Pikarsky E, Tavor E, Klar A, Abramovitch R, Hochman J, Lago TG, Honigman A (2008) A key role for cyclic AMP-responsive element binding protein in hypoxia-mediated activation of the angiogenesis factor CCN1 (CYR61) in tumor cells. Mol Cancer Res 6:1397–1409

Article  CAS  PubMed  Google Scholar 

Schütze N, Rucker N, Muller J, Adamski J, Jakob F (2001) 5’ flanking sequence of the human immediate early responsive gene ccn1 (cyr61) and mapping of polymorphic CA repeat sequence motifs in the human ccn1 (cyr61) locus. Mol Pathol 54:170–175

Article  PubMed  PubMed Central  Google Scholar 

Mendes KL, Lelis DF, Santos SHS (2017) Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev 38:98–105

Article  CAS  PubMed  Google Scholar 

Li Y, Jin J, Wang Y (2022) SIRT6 widely regulates aging, immunity, and cancer. Front Oncol 12:861334

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishikawa K, Seno S, Yoshihara T, Narazaki A, Sugiura Y et al (2021) Osteoclasts adapt to physioxia perturbation through DNA demethylation. EMBO Rep 22:e53035

Article  CAS  PubMed  PubMed Central  Google Scholar 

Narazaki A, Shimizu R, Yoshihara T, Kikuta J, Sakaguchi R, Tobita S, Mori Y, Ishii M, Nishikawa K (2022) Determination of the physiological range of oxygen tension in bone marrow monocytes using two-photon phosphorescence lifetime imaging microscopy. Sci Rep 12:3497

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen CY, Fuh LJ, Huang CC, Hsu CJ, Su CM, Liu SC, Lin YM, Tang CH (2017) Enhancement of CCL2 expression and monocyte migration by CCN1 in osteoblasts through inhibiting miR-518a-5p: implication of rheumatoid arthritis therapy. Sci Rep 7:421

Article  PubMed  PubMed Central  Google Scholar 

He X, Liu J, Liang C, Badshah SA, Zheng K, Dang L, Guo B, Li D, Lu C, Guo Q, Fan D, Bian Y, Feng H, Xiao L, Pan X, Xiao C, Zhang B, Zhang G, Lu A (2019) Osteoblastic PLEKHO1 contributes to joint inflammation in rheumatoid arthritis. EBioMedicine 41:538–555

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao J, Qin S, Li W, Yao L, Huang P, Liao J, Liu J, Li S (2020) Osteogenic differentiation of rat bone mesenchymal stem cells modulated by MiR-186 via SIRT6. Life Sci 253:117660

Article  CAS  PubMed  Google Scholar 

Kim SJ, Piao Y, Lee MG, Han AR, Kim K, Hwang CJ, Seo JT, Moon SJ (2020) Loss of Sirtuin 6 in osteoblast lineage cells activates osteoclasts, resulting in osteopenia. Bone 138:115497

Article  CAS  PubMed  Google Scholar 

Zhang Z, Song Y, Wang SI, Ha SH, Jang KY, Park BH, Moon YJ, Kim JR (2021) Osteoblasts/osteocytes sirtuin 6 is vital to preventing ischemic osteonecrosis through targeting VDR-RANKL signaling. J Bone Miner Res 36:579–590

Article  CAS  PubMed  Google Scholar 

Kok SH, Hou KL, Hong CY, Chao LH, Hsiang-Hua Lai E, Wang HW, Yang H, Shun CT, Wang JS, Lin SK (2015) Sirtuin 6 modulates hypoxia-induced apoptosis in osteoblasts via inhibition of glycolysis: implication for pathogenesis of periapical lesions. J Endod 41:1631–1637

Article  PubMed  Google Scholar 

Lee YL, Lin SK, Hou KL, Kok SH, Lai EH, Wang HW, Chang JZ, Yang H, Hong CY (2018) Sirtuin 6 attenuates periapical lesion propagation by modulating hypoxia-induced chemokine (C–C motif) ligand 2 production in osteoblasts. Int Endod J 51:e74–e86

Article  PubMed  Google Scholar 

Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY, Chua KF (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136:62–74

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao C, Wang RH, Lahusen TJ, Park O, Bertola A, Maruyama T, Reynolds D, Chen Q, Xu X, Young HA, Chen WJ, Gao B, Deng CX (2012) Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice. J Biol Chem 287:41903–41913

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grimley R, Polyakova O, Vamathevan J, McKenary J, Hayes B, Patel C, Smith J, Bridges A, Fosberry A, Bhardwaja A, Mouzon B, Chung CW, Barrett N, Richmond N, Modha S, Solari R (2012) Over expression of wild type or a catalytically dead mutant of sirtuin 6 does not influence NFκB responses. PLoS ONE 7:e39847

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wakisaka S, Suzuki N, Takeno M, Takeba Y, Nagafuchi H, Saito N, Hashimoto H, Tomita T, Ochi T, Sakane T (1998) Involvement of simultaneous multiple transcription factor expression, including cAMP responsive element binding protein and OCT-1, for synovial cell outgrowth in patients with rheumatoid arthritis. Ann Rheum Dis 57:487–494

Article  CAS  PubMed  PubMed Central  Google Scholar 

McEvoy AN, Bresnihan B, FitzGerald O, Murphy EP (2004) Cyclooxygenase 2-derived prostaglandin E2 production by corticotropin-releasing hormone contributes to the activated cAMP response element binding protein content in rheumatoid arthritis synovial tissue. Arthritis Rheum 50:1132–1145

Article  CAS  PubMed  Google Scholar 

Song MY, Han CY, Moon YJ, Lee JH, Bae EJ, Park BH (2022) Sirt6 reprograms myofibers to oxidative type through CREB-dependent Sox6 suppression. Nat Commun 13:1808

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang R, Li H, Guo Q, Zhang L, Zhu J, Ji J (2018) Sirtuin6 inhibits c-triggered inflammation through TLR4 abrogation regulated by ROS and TRPV1/CGRP. J Cell Biochem 119:9141–9153

Article  CAS  PubMed  Google Scholar 

Pan Z, Wu X, Zhang X, Hu K (2023) Phosphodiesterase 4B activation exacerbates pulmonary hypertension induced by intermittent hypoxia by regulating mitochondrial injury and cAMP/PKA/p-CREB/PGC-1α signaling. Biomed Pharmacother 158:114095

Article  CAS  PubMed  Google Scholar 

Li C, Tian J, Li G, Jiang W, Xing Y, Hou J, Zhu H, Xu H, Zhang G, Liu Z, Ye Z (2010) Asperosaponin VI protects cardiac myocytes from hypoxia-induced apoptosis via activation of the PI3K/Akt and CREB pathways. Eur J Pharmacol 649:100–107

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif