CD47 masks pro-phagocytic ligands in cis on tumor cells to suppress antitumor immunity

Minn, A. J. & Wherry, E. J. Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell 165, 272–275 (2016).

Article  CAS  PubMed  Google Scholar 

Sharma, P. & Allison, J. P. Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 20, 75–76 (2020).

Article  CAS  PubMed  Google Scholar 

Son, J. et al. Inhibition of the CD47-SIRPα axis for cancer therapy: a systematic review and meta-analysis of emerging clinical data. Front. Immunol. 13, 1027235 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veillette, A. & Chen, J. SIRPα-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol. 39, 173–184 (2018).

Article  CAS  PubMed  Google Scholar 

Chen, J. et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 544, 493–497 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Advani, R. et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matlung, H. L., Szilagyi, K., Barclay, N. A. & van den Berg, T. K. The CD47–SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol. Rev. 276, 145–164 (2017).

Article  CAS  PubMed  Google Scholar 

Zhao, X. W. et al. CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Proc. Natl Acad. Sci. USA 108, 18342–18347 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, X. W., Kuijpers, T. W. & van den Berg, T. K. Is targeting of CD47–SIRPα enough for treating hematopoietic malignancy? Blood 119, 4333–4334 (2012).

Article  CAS  PubMed  Google Scholar 

Petrova, P. S. et al. TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin. Cancer Res. 23, 1068–1079 (2017).

Article  CAS  PubMed  Google Scholar 

Weiskopf, K. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013).

Article  CAS  PubMed  Google Scholar 

Ring, N. G. et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc. Natl Acad. Sci. USA 114, E10578–E10585 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang, Z. et al. Inflammatory macrophages exploit unconventional pro-phagocytic integrins for phagocytosis and anti-tumor immunity. Cell Rep. 37, 110111 (2021).

Article  CAS  PubMed  Google Scholar 

Guo, H., Cruz-Munoz, M. E., Wu, N., Robbins, M. & Veillette, A. Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring src kinases, CD45, and SHIP-1 that is defective in multiple myeloma cells. Mol. Cell. Biol. 35, 41–51 (2015).

Article  PubMed  Google Scholar 

Lu, Y. et al. Immunological conversion of solid tumours using a bispecific nanobioconjugate for cancer immunotherapy. Nat. Nanotechnol. https://doi.org/10.1038/s41565-022-01245-7 (2022).

Johnson, L. D. S. et al. Targeting CD47 in Sezary syndrome with SIRPαFc. Blood Adv. 3, 1145–1153 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Querfeld, C. et al. Intralesional TTI-621, a novel biologic targeting the innate immune checkpoint CD47, in patients with relapsed or refractory mycosis fungoides or Sezary syndrome: a multicentre, phase 1 study. Lancet Haematol. 8, e808–e817 (2021).

Article  CAS  PubMed  Google Scholar 

Strati, P. et al. Interim results from the first clinical study of CC-95251, an anti-signal regulatory protein-α (SIRPα) antibody, in combination with rituximab in patients with relapsed and/or refractory non-Hodgkin lymphoma (R/R NHL). Blood 138, 2493 (2021).

Article  Google Scholar 

Delidakis, G., Kim, J. E., George, K. & Georgiou, G. Improving antibody therapeutics by manipulating the Fc domain: immunological and structural considerations. Annu. Rev. Biomed. Eng. 24, 249–274 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Kang, T. H. & Jung, S. T. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp. Mol. Med. 51, 1–9 (2019).

PubMed  Google Scholar 

Lo, M. et al. Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice. J. Biol. Chem. 292, 3900–3908 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sekar, R. B. & Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, E. et al. NTB-A receptor crystal structure: insights into homophilic interactions in the signaling lymphocytic activation molecule receptor family. Immunity 25, 559–570 (2006).

Article  CAS  PubMed  Google Scholar 

Hatherley, D. et al. Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol. Cell 31, 266–277 (2008).

Article  CAS  PubMed  Google Scholar 

Goyette, M.-A. et al. The receptor tyrosine kinase AXL is required at multiple steps of the metastatic cascade during HER2-positive breast cancer progression. Cell Rep. 23, 1476–1490 (2018).

Article  CAS  PubMed  Google Scholar 

Blanchard, E. L. et al. Proximity ligation assays for in situ detection of innate immune activation: focus on in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 14, 52–66 (2019).

Article  CAS  PubMed  Google Scholar 

Zhao, Y. et al. Antigen-presenting cell-intrinsic PD-1 neutralizes PD-L1 in cis to attenuate PD-1 signaling in T cells. Cell Rep. 24, 379–390 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, Y. et al. PD-L1:CD80 cis-heterodimer triggers the co-stimulatory receptor CD28 while repressing the inhibitory PD-1 and CTLA-4 pathways. Immunity 51, 1059–1073 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, Y. et al. cis-B7: CD28 interactions at invaginated synaptic membranes provide CD28 co-stimulation and promote CD8+ T cell function and anti-tumor immunity. Immunity https://doi.org/10.1016/j.immuni.2023.04.005 (2023).

Ritchie, D. & Colonna, M. Mechanisms of action and clinical development of elotuzumab. Clin. Transl. Sci. 11, 261–266 (2018).

Article  PubMed  Google Scholar 

Howden, A. J. M. et al. Quantitative analysis of T cell proteomes and environmental sensors during T cell differentiation. Nat. Immunol. 20, 1542–1554 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bian, Z. et al. Cd47-Sirpα interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells. Proc. Natl Acad. Sci. USA 113, E5434–E5443 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, H. et al. Deletion of Slam locus in mice reveals inhibitory role of SLAM family in NK cell responses regulated by cytokines and LFA-1. J. Exp. Med. 213, 2187–2207 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Abraham, N., Miceli, M. C., Parnes, J. R. & Veillette, A. Enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Nature 350, 62–66 (1991).

Article  CAS  PubMed  Google Scholar 

Bouchon, A., Cella, M., Grierson, H. L., Cohen, J. I. & Colonna, M. Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J. Immunol. 167, 5517–5521 (2001).

Article  CAS  PubMed  Google Scholar 

von Boehmer, L. et al. Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat. Protoc. 11, 1908–1923 (2016).

Article 

Comments (0)

No login
gif