Microglia promote anti-tumour immunity and suppress breast cancer brain metastasis

Witzel, I., Oliveira-Ferrer, L., Pantel, K., Müller, V. & Wikman, H. Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res. 18, 1–9 (2016).

Article  Google Scholar 

Ostrom, Q. T., Wright, C. H. & Barnholtz-Sloan, J. S. Brain Metastases: Epidemiology. Handbook of Clinical Neurology vol. 149 (Elsevier, 2018).

Niikura, N. et al. Treatment outcomes and prognostic factors for patients with brain metastases from breast cancer of each subtype: a multicenter retrospective analysis. Breast Cancer Res. Treat. 147, 103–112 (2014).

Article  PubMed  Google Scholar 

Brufsky, A. M. et al. Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin. Cancer Res. 17, 4834–4843 (2011).

Article  CAS  PubMed  Google Scholar 

Rostami, R., Mittal, S., Rostami, P., Tavassoli, F. & Jabbari, B. Brain metastasis in breast cancer: a comprehensive literature review. J. Neuro-Oncol. https://doi.org/10.1007/s11060-016-2075-3 (2016).

Article  Google Scholar 

Martin, A. M. et al. Immunotherapy and symptomatic radiation necrosis in patients with brain metastases treated with stereotactic radiation. JAMA Oncol. 4, 1123–1124 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Deeken, J. F. & Löscher, W. The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin. Cancer Res. 13, 1663–1674 (2007).

Article  CAS  PubMed  Google Scholar 

Tosoni, A., Ermani, M. & Brandes, A. A. The pathogenesis and treatment of brain metastases: a comprehensive review. Crit. Rev. Oncol. Hematol. 52, 199–215 (2004).

Article  PubMed  Google Scholar 

Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. https://doi.org/10.1038/nn1997 (2007).

Article  PubMed  Google Scholar 

Wolf, S. A., Boddeke, H. W. G. M. & Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol. 79, 619–643 (2017).

Article  CAS  PubMed  Google Scholar 

Hammond, T. R., Robinton, D. & Stevens, B. Microglia and the brain: complementary partners in development and disease. Annu. Rev. Cell Dev. Biol. 34, 523–544 (2018).

Article  CAS  PubMed  Google Scholar 

Quail, D. F. & Joyce, J. A. The microenvironmental landscape of brain tumors. Cancer Cell 31, 326–341 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. https://doi.org/10.1038/ni.3423 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, Aging, and disease. Immunity 48, 380–395.e6 (2018).

Article  CAS  PubMed  Google Scholar 

Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science https://doi.org/10.1126/science.aat7554 (2019).

Article  PubMed  Google Scholar 

Duchnowska, R. et al. Immune response in breast cancer brain metastases and their microenvironment: the role of the PD-1/PD-L axis. Breast Cancer Res. 18, 43 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Coniglio, S. J. et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol. Med. https://doi.org/10.2119/molmed.2011.00217 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science https://doi.org/10.1126/science.aad3018 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Yan, D. et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene https://doi.org/10.1038/onc.2017.261 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Qiao, S., Qian, Y., Xu, G., Luo, Q. & Zhang, Z. Long-term characterization of activated microglia/macrophages facilitating the development of experimental brain metastasis through intravital microscopic imaging. J. Neuroinflammation https://doi.org/10.1186/s12974-018-1389-9 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Guldner, I. H. et al. CNS-native myeloid cells drive immune suppression in the brain metastatic niche through Cxcl10. Cell https://doi.org/10.1016/j.cell.2020.09.064 (2020).

Prinz, M. & Priller, J. Tickets to the brain: role of CCR2 and CX3CR1 in myeloid cell entry in the CNS. J. Neuroimmunol. 224, 80–84 (2010).

Article  CAS  PubMed  Google Scholar 

Rojo, R. et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat. Commun. 10, 3215 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature https://doi.org/10.1038/nature08021 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Lorger, M. & Felding-Habermann, B. Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am. J. Pathol. 176, 2958–2971 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

Article  CAS  PubMed  Google Scholar 

Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell https://doi.org/10.1016/j.cell.2014.01.040 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Kettenmann, H., Hanisch, U.-K., Noda, M. & Verkhratsky, A. Physiology of microglia. Physiol. Rev. https://doi.org/10.1152/physrev.00011.2010 (2011).

Article  PubMed  Google Scholar 

Bowman, R. L. et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 17, 2445–2459 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Flanagan, C. H. et al. Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol. 20, 1–13 (2019).

Article  Google Scholar 

Motenko, H., Neuhauser, S. B., O’Keefe, M. & Richardson, J. E. MouseMine: a new data warehouse for MGI. Mamm. Genome 26, 325–330 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dey, K. K., Hsiao, C. J. & Stephens, M. Visualizing the structure of RNA-seq expression data using grade of membership models. PLoS Genet. 13, 1–23 (2017).

Google Scholar 

Mathys, H. et al. Temporal tracking of microglia activation in neurodegeneration at. single-cell resolution. Cell Rep. 21, 366–380 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019).

Article  CAS  PubMed  Google Scholar 

Ochocka, N. et al. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat. Commun. 12, 1–14 (2021).

Article  Google Scholar 

Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

Article  CAS  PubMed  Google Scholar 

Blasius, A. L. et al. Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J. Immunol. https://doi.org/10.4049/jimmunol.177.5.3260 (2006).

Article  PubMed  Google Scholar 

Neil, S. J. D., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature https://doi.org/10.1038/nature06553 (2008).

Comments (0)

No login
gif